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Energy Efficiency of Cloud Computing

Total energy use of U.S. business
software by application

400
373 P)
ﬁ [r— | m CRM software
X
2 : Productivity software
(4
> 300 - 1 ® Email
e 1
E |
=
£ 1
% 200 X
= I Technical potential =87%
E I reduction in primary energy use
S 100 1
K=} !
) v 47p)
o ot
B —l
0
Present day business Cloud-based business
(a) software software

from E. Masanet et al, The Energy Efficiency Potential of Cloud-Based
Software: A U.S. Case Study,
Lawrence Berkeley National Laboratory, June 2013
http:
//crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf


http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf

Energy Efficiency of Cloud Computing

Total energy use of U.S. business
software by application

400 373 P)
9_>5 e " | W CRM software
2 : Productivity software
(4

300 f
= 1 o Email . .
5 ; » most hosting still
5 \ in small server
s ! rooms/closets
= I Technical potential =87%
E I reduction in primary energy use
S 100 1
.0 l
= v 4a7p)
[ e
o

) —
Present day business Cloud-based business
(a) software software

from E. Masanet et al, The Energy Efficiency Potential of Cloud-Based
Software: A U.S. Case Study,
Lawrence Berkeley National Laboratory, June 2013
http:
//crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf


http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf

Energy Efficiency of Cloud Computing

Total energy use of U.S. business
software by application

o 100 373PJ
80 s B = CRM software
2 . Productivity software
g 300 : M Email : H
5 ! » most hosting still
5 \ in small server
2 = | rooms/closets
= I Technical potential =87%
Zﬁ' o0 : reduction in primary energy use ° Step 1 * move tO
1

g v a7P) cloud
o T
[N

0 &

Present day business Cloud-based business
(a) software software

from E. Masanet et al, The Energy Efficiency Potential of Cloud-Based
Software: A U.S. Case Study,
Lawrence Berkeley National Laboratory, June 2013
http:
//crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf


http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf

Energy Efficiency of Cloud Computing

Total energy use of U.S. business

software by application
400

373 P)
P_>° e " | W CRM software
2 ! Productivity software
¢ 300 ! i
> 1 M Email
o 1
E ,
=
o 1
% 200 -
= I Technical potential =87%
E I reduction in primary energy use
S 100 - 1
.0 I
E v 47 P)
[ EEEE————
i "
o 1
Present day business Cloud-based business
(a) software software

from E. Masanet et al, The Energy Efficiency Potential of Cloud-Based
Software: A U.S. Case Study,
Lawrence Berkeley National Laboratory, June 2013
http:
//crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf

most hosting still
in small server
rooms/closets

step 1: move to
cloud
step 2: optimize
cloud


http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
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Power Proportionality

e energy consumption proportional to work done
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Power Proportionality

e energy consumption proportional to work done
e SPECpower_ssj2008 benchmark
e power range improving over time?
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IPR (idle-to-peak power ratio)
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Techniques for Energy Efficiency

« dynamic server (de)provisioning
» adjust number of active servers to load
 idle or power down unused servers
« frequency and voltage scaling
» adjust CPU frequency based on workload
» lower frequency = less power consumed
« energy-aware scheduling
» choose energy-efficient platform for each
workload



Voltage and Frequency Scaling
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CPU Scaling

S = process feature size ratio, e.q,
32 nmto 22 nm gives S =32/22 = 1.4

Dennard scaling

« A Quantity o S2

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. |IEEE Micro 33(5), Aug.
2013, pp. 8-19.
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Dark Silicon

¢ silicon that is not used all the time, or not used
at its full frequency

» fixed power envelope limits growth in Q or F or
both

« Denard: QF grows by S3
» post-Denard: QF grows by only S



Dark Silicon Example

Spectrum of trade-offs
between no. of cores and
frequency

2X4 cores at 1.8 GHz
Example: (8 cores dark, 8 dim)

65 nm — 32nm (S = 2)

(Industry’s choice)

4 cores at 1.8 GHz

4 cores at 2X1.8 GHz
(12 cores dark)

' 75% dark after two generations;

93% dark after four generations

65 nm 32 nm

Source: M.B. Taylor,
A Landscape of the New Dark Silicon Design Regime.
IEEE Micro 33(5), Aug. 2013, pp. 8-19.



Responses to Dark Silicon

« smaller chips
e “dim” silicon
» reduce clock rate, or
» use more space for low-power functions, e.g.,
cache,
o power only part of the time

« functional specialization

» fast or efficient co-processors
» execution hops around



