
Transactions 1

Problems Caused by Failures

• Update all account balances at a bank branch.

Accounts(Anum, CId, BranchId, Balance)

update Accounts

set Balance = Balance * 1.05

where BranchId = 12345

If the system crashes while processing this update, some,

but not all, tuples with BranchId = 12345 may have

been updated.

CS743 DB Management and Use Fall 2014



Transactions 2

Another Failure-Related Problem

• transfer money between accounts:

update Accounts

set Balance = Balance - 100

where Anum = 8888

update Accounts

set Balance = Balance + 100

where Anum = 9999

If the system fails between these updates, money may be

withdrawn but not redeposited

CS743 DB Management and Use Fall 2014



Transactions 3

Problems Caused by Concurrency

• Application 1:

update Accounts

set Balance = Balance - 100

where Anum = 8888

update Accounts

set Balance = Balance + 100

where Anum = 9999

• Application 2:

select Sum(Balance)

from Accounts

If the applications run concurrently, the total balance re-

turned to application 2 may be inaccurate.

CS743 DB Management and Use Fall 2014



Transactions 4

Another Concurrency Problem

• Application 1:

select balance into :balance

from Accounts

where Anum = 8888

compute :newbalance using :balance

update Accounts

set Balance = :newbalance

where Anum = 8888

• Application 2: same as Application 1

If the applications run concurrently, one of the updates

may be “lost”.

CS743 DB Management and Use Fall 2014



Transactions 5

Transaction Properties

• Transactions are durable, atomic application-specified units of

work.

Atomic: indivisible, all-or-nothing.

Durable: effects survive failures.

A tomic: a transaction occurs entirely, or not at all

C onsistent

I solated: a transaction’s unfinished changes are not vis-

ible to others

D urable: once it is complete, a transaction’s changes are

permanent

CS743 DB Management and Use Fall 2014



Transactions 6

Serializability (informal)

• Concurrent transactions must appear to have been executed

sequentially, i.e., one at a time, in some order. If Ti and Tj are

concurrent transactions, then either:

– Ti will appear to precede Tj , meaning that Tj will “see” any

updates made by Ti , and Ti will not see any updates made by Tj

, or

– Ti will appear to follow Tj , meaning that Ti will see Tj ’s updates

and Tj will not see Ti’s.

CS743 DB Management and Use Fall 2014



Transactions 7

Serializability: An Example

• An interleaved execution of two transactions, T1 and T2:

Ha = w1[x] r2[x] w1[y] r2[y]

• An equivalent serial execution of T1 and T2:

Hb = w1[x] w1[y] r2[x] r2[y]

• An interleaved execution of T1 and T2 with no equivalent serial

execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Ha is serializable because it is equivalent to Hb , a serial

schedule. Hc is not serializable.

CS743 DB Management and Use Fall 2014



Transactions 8

Transactions and Histories

• Two operations conflict if:

– they belong to different transactions

– they operate on the same object

– at least one of the operations is a write

• A transaction is a sequence of read and write operations.

• An execution history over a set of transactions T1 . . . Tn is an

interleaving of the the operations of T1 . . . Tn in which the operation

ordering imposed by each transaction is preserved.

CS743 DB Management and Use Fall 2014



Transactions 9

Serializability

• Two histories are (conflict) equivalent if

– they are over the same set of transactions, and

– the ordering of each pair of conflicting operations is the same in

each history

• A history H is said to be (conflict) serializable if there exists some

serial history H ′ that is (conflict) equivalent to H

CS743 DB Management and Use Fall 2014



Transactions 10

Testing for Serializability

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

Is this history serializable?

A history is serializable iff its serialization graph is

acyclic.

CS743 DB Management and Use Fall 2014



Transactions 11

Serialization Graphs

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

CS743 DB Management and Use Fall 2014



Transactions 12

Serialization Graphs (cont’d)

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

The history above is equivalent to

w4[y]w4[z] r2[u] r2[z]w2[z] r1[x] r1[y] r1[z]r3[x] r3[u] r3[z]w3[y]

That is, it is equivalent to executing T4 followed by T2 fol-

lowed by T1 followed by T3.

CS743 DB Management and Use Fall 2014



Transactions 13

Abort and Commit

• A transaction may terminate in one of two ways:

– When a transaction commits, any updates it made become

durable, and they become visible to other transactions. A

commit is the “all” in “all-or-nothing” execution.

– When a transaction aborts, any updates it may have made are

undone (erased), as if the transaction never ran at all. An abort

is the “nothing” in “all-or-nothing” execution.

• A transaction that has started but has not yet aborted or committed

is said to be active.

CS743 DB Management and Use Fall 2014



Transactions 14

Transactions in SQL

• A new transaction is begun when an application first executes an

SQL command.

• Two SQL commands are available to terminate a transaction:

– commit work: commits the transaction

– rollback work: abort the transaction

• A new transaction begins with the application’s next SQL command

after commit workor rollback work.

CS743 DB Management and Use Fall 2014



Transactions 15

Implementing Transactions

• The implementation of transactions in a DBMS has two parts:

Concurrency Control: guarantees that the execution history has

the desired properties (such as serializability)

Recovery Management: guarantees that committed transactions

are durable (despite failures), and that aborted transactions

have no effect on the database

CS743 DB Management and Use Fall 2014



Transactions 16

Concurrency Control

• Serializability can be guaranteed by executing transactions serially,

but it many environments this leads to poor performance.

• Typically, many transactions are in progress concurrently, and a

concurrency control protocol is used to ensure that the resulting

history is serializable.

• Many concurrency control protocols have been proposed, based on:

– locking, or

– timestamps, or

– (optimistic) conflict detection, or . . .

CS743 DB Management and Use Fall 2014



Transactions 17

Two-Phase Locking

• The rules

1. Before a transaction may read or write an object, it must have a

lock on that object.

– a shared lock is required to read an object

– an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same object

unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it may

not obtain any new locks.

If all transactions use two-phase locking, the execution

history is guaranteed to be serializable.

CS743 DB Management and Use Fall 2014



Transactions 18

Strict Two-Phase Locking

• Most systems implement a somewhat stronger protocol, called strict

two-phase locking. It adds one more rule:

– A transaction may not release any locks until it commits (or

aborts)

If all transactions use strict two-phase locking, the exe-

cution history is guaranteed to be both serializable and

strict.

CS743 DB Management and Use Fall 2014



Transactions 19

Transaction Blocking

• Consider the following sequence of events:

– T1 acquires a shared lock on x and reads x

– T2 attempts to acquire an exclusive lock on x (so that it can write

x)

• The two-phase locking rules prevent T2 from acquiring its exlusive

lock - this is called a lock conflict.

• Lock conflicts can be resolved in one of two ways:

1. T2 can be blocked - forced to wait until T1 releases its lock

2. T1 can be pre-empted - forced to abort and give up its locks

CS743 DB Management and Use Fall 2014



Transactions 20

Deadlocks

• transaction blocking can result in deadlocks For example:

– T1 reads object x

– T2 reads object y

– T2 attempts to write object x (it is blocked)

– T1 attempts to write object y (it is blocked)

A deadlock can be resolved only by forcing one of the

transactions involved in the deadlock to abort.

CS743 DB Management and Use Fall 2014



Transactions 21

Strict 2PL Example

requests : r1[x] r2[y]

schedule : r1[x] r2[y]

requests : r1[x] r2[y] w3[x] w2[y]

schedule : r1[x] r2[y] w2[y]

requests : r1[x] r2[y] w3[x] w2[y] r2[z] w1[z] r4[x]

schedule : r1[x] r2[y] w2[y] r2[z]

CS743 DB Management and Use Fall 2014



Transactions 22

Strict 2PL Example (cont’d)

requests : r1[x] r2[y] w3[x] w2[y] r2[z] w1[z] r4[x] c2

schedule : r1[x] r2[y] w2[y] r2[z] c2 w1[z]

requests : r1[x] r2[y] w3[x] w2[y] r2[z] w1[z] r4[x] c2 c1

schedule : r1[x] r2[y] w2[y] r2[z] c2 w1[z] c1 w3[x]

requests : r1[x] r2[y] w3[x] w2[y] r2[z] w1[z] r4[x] c2 c1 a3 r4[y] c4

schedule : r1[x] r2[y] w2[y] r2[z] c2 w1[z] c1 w3[x] a3 r4[x] r4[y] c4

CS743 DB Management and Use Fall 2014


