A Parts/Suppliers Database Example

- Description of a parts/suppliers database:
 - Each type of part has a name and an identifying number, and may be supplied by zero or more suppliers. Each supplier may offer the part at a different price.
 - Each supplier has an identifying number, a name, and a contact location for ordering parts.
Parts/Suppliers Example (cont.)

An E-R diagram for the parts/suppliers database.
Suppliers

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

Parts

<table>
<thead>
<tr>
<th>Pno</th>
<th>Pname</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Bolt</td>
</tr>
<tr>
<td>P2</td>
<td>Nut</td>
</tr>
<tr>
<td>P3</td>
<td>Screw</td>
</tr>
</tbody>
</table>

Supplies

<table>
<thead>
<tr>
<th>Sno</th>
<th>Pno</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>P1</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>P2</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>P3</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>P3</td>
<td>0.40</td>
</tr>
</tbody>
</table>

An instance of the parts/suppliers database.
An alternative E-R model for the parts/suppliers database.
Alternative Example (cont.)

Supplied_Items

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td>P3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>

A database instance corresponding to the alternative E-R model.
Change Anomalies

• Some questions:
 – How do these alternatives compare?
 – Is one schema better than the other?
 – What does it mean for a schema to be good?

• The single-table schema suffers from several kinds of problems:
 – Update problems (e.g. changing name of supplier)
 – Insert problems (e.g. add a new item)
 – Delete problems (e.g. Budd no longer supplies screws)
 – Likely increase in space requirements

• The multi-table schema does not have these problems.

• Goals:
 – A methodology for evaluating schemas.
 – A methodology for transforming bad schemas into good schemas.
Designing Good Databases

• What makes a relational database schema good?
 – One criterion: independent facts in separate tables

• Functional dependencies (among attributes) are used to determine which attributes are mutually independent.
Functional Dependencies

- The schema of relation will be represented by a list R’s attribute names. Each attribute name will often be designed by a single letter:
 - Example: if R is the Suppliers relation, with attributes Sno, Sname, City, we may simply write $R = SNC$

- The notation $X \subseteq R$ will be used to mean that X represents some subset of the attributes of R, e.g., $X = S$, or $X = SC$.

- Let R be a relation schema, and $X, Y \subseteq R$. The **functional dependency**

 $$X \rightarrow Y$$

 holds on R if no legal instance of R contains two tuples t and u with $t.X = u.X$ and $t.Y \neq u.Y$

- The notation $t.X$ means the values of the attributes X in tuple t.
Functional Dependencies Are Constraints

TEACH

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Course</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Data Structures</td>
<td>Bartram</td>
</tr>
<tr>
<td>Smith</td>
<td>Data Management</td>
<td>Al-Nour</td>
</tr>
<tr>
<td>Hall</td>
<td>Compilers</td>
<td>Hoffman</td>
</tr>
<tr>
<td>Brown</td>
<td>Data Structures</td>
<td>Augenthaler</td>
</tr>
</tbody>
</table>

Functional dependencies are constraints on all instances of a schema. A single instance can confirm that a functional dependency does not hold. It cannot confirm that a functional dependency always holds.
Functional Dependencies and Keys

• Keys (again)
 – A superkey is a set of attributes such that no two tuples (in an instance) agree on their values for those attributes.
 – A (candidate) key is a minimal superkey.

• Functional dependencies generalize the notion of superkey.

Saying that $K \subseteq R$ is a superkey for relation schema R is the same as saying that the functional dependency $K \rightarrow R$ holds on R.

Boyce-Codd Normal Form (BCNF) - Informal

- BCNF formalizes the idea that in a good database schema, independent relationships are stored in separate tables.

- Given a database schema and a set of functional dependencies for the attributes in the schema, we can determine whether the schema is in BCNF. A database schema is in BCNF if each of its relation schemas is in BCNF.

- Informally, a relation schema is in BCNF if and only if any group of its attributes that functionally determines any others of its attributes functionally determines all others, i.e., that group of attributes is a superkey of the relation.
BCNF and Redundancy

- Why does BCNF avoid redundancy? Consider:

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
</table>

- The functional dependency

\[\text{Sno} \rightarrow \text{Sname, City} \]

holds for Supplied_Items

- This implies that a supplier’s name and city must be repeated each once for each part supplied by that supplier.

- Now, assume this FD holds over a schema \(R \) that is in BCNF. This implies that:
 - Sno is a superkey for \(R \)
 - each Sno value appears on one row only
 - no need to repeat Sname and City values
Formal Definition of BCNF

- Let R be a relation schema and F a set of functional dependencies. A functional dependency $X \rightarrow Y$ is trivial if $Y \subseteq X$.

- Schema R is in **BCNF** if and only if whenever $(X \rightarrow Y) \in F^+$ and $XY \subseteq R$, then either
 - $(X \rightarrow Y)$ is trivial, or
 - X is a superkey of R

- A database schema $\{R_1, \ldots, R_n\}$ is in BCNF if each relation schema R_i is in BCNF
Closure of FD Sets

- The definition of BCNF refers to F^+. This is called the closure of the set of functional dependencies F.

- Informally, F^+ includes all of the dependencies in F, plus any dependencies they imply.

- For example, suppose that F consists of the two dependencies

 \[
 A \rightarrow B \\
 B \rightarrow C
 \]

 If a relation satisfies these two dependencies, then it must also satisfy the dependency

 \[
 A \rightarrow C
 \]

 This means that $A \rightarrow C$ should be included in F^+.

- Note that $F \subseteq F^+$
Armstrong’s Axioms

• Logical implications of a set of functional dependencies can be derived by using inference rules called **Armstrong’s axioms**

 – (reflexivity) \(Y \subseteq X \Rightarrow X \rightarrow Y \)

 – (augmentation) \(X \rightarrow Y \Rightarrow XZ \rightarrow YZ \)

 – (transitivity) \(X \rightarrow Y, Y \rightarrow Z \Rightarrow X \rightarrow Z \)

• Additional rules can be derived from the three above:

 – (union) \(X \rightarrow Y, X \rightarrow Z \Rightarrow X \rightarrow YZ \)

 – (decomposition) \(X \rightarrow YZ \Rightarrow X \rightarrow Y \)

• These axioms are

 – sound (anything derived from \(F \) is in \(F^+ \))

 – complete (anything in \(F^+ \) can be derived)
Using Armstrong’s Axioms

- Let F consist of:
 - SIN, PNum \rightarrow Hours
 - SIN \rightarrow EName
 - PNum \rightarrow PName, PLoc
 - PLoc, Hours \rightarrow Allowance

- A derivation of: SIN, PNum \rightarrow Allowance
 1. SIN, PNum \rightarrow Hours ($\in F$)
 2. PNum \rightarrow PName, PLoc ($\in F$)
 3. PLoc, Hours \rightarrow Allowance ($\in F$)
 4. SIN, PNum \rightarrow PNum (reflexivity)
 5. SIN, PNum \rightarrow PName, PLoc (transitivity, 4 and 2)
 6. SIN, PNum \rightarrow PLoc (decomposition, 5)
 7. SIN, PNum \rightarrow PLoc, Hours (union, 6, 1)
 8. SIN, PNum \rightarrow Allowance (transitivity, 7 and 3)
Computing Attribute Closures

- There is a more efficient way of using Armstrong’s axioms

```plaintext
function ComputeX⁺(X, F) {
    X⁺ = X;
    while there exists (Y → Z) ∈ F such that Y ⊆ X⁺ and Z ⊈ X⁺ do {
        X⁺ = X⁺ ∪ Z;
    }
    return (X⁺);
}
```
Computing Attribute Closures (cont’d)

• Let R be a relational schema and F a set of functional dependencies on R. Then

Theorem: $X \rightarrow Y \in F^+$ if and only if

$$Y \subseteq \text{Compute}X^+(X, F)$$

Theorem: X is a superkey of R if and only if

$$\text{Compute}X^+(X, F) = R$$
Attribute Closure Example

• Let F consists of:
 - $\text{SIN} \rightarrow \text{EName}$
 - $\text{Pnum} \rightarrow \text{Pname}, \text{Ploc}$
 - $\text{PLoc, Hours} \rightarrow \text{Allowance}$

• Compute $X^+ (\{\text{Pnum, Hours}\}, F)$:

<table>
<thead>
<tr>
<th>FD</th>
<th>X^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>Pnum, Hours</td>
</tr>
<tr>
<td>$\text{Pnum} \rightarrow \text{Pname}, \text{Ploc}$</td>
<td>Pnum, Hours, Pname, Ploc</td>
</tr>
<tr>
<td>$\text{PLoc, Hours} \rightarrow \text{Allowance}$</td>
<td>Pnum, Hours, Pname, Ploc, Allowance</td>
</tr>
</tbody>
</table>
Computing a Normal Form

• What to do if a given relational schema is not in BCNF?
• Strategy: identify undesirable dependencies, then decompose the schema.
• Let R be a relation schema. A collection $\{R_1, \ldots, R_n\}$ of relation schemas is a decomposition of R if

$$R = R_1 \cup R_2 \cup \cdots \cup R_n$$

• A good decomposition does not
 – lose information
 – complicate checking of constraints
Lossless-Join Decompositions

• Consider decomposing

<table>
<thead>
<tr>
<th>Student</th>
<th>Assignment</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>A2</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>A1</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

into two tables

SGM

<table>
<thead>
<tr>
<th>Student</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

AM

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>80</td>
</tr>
<tr>
<td>A2</td>
<td>60</td>
</tr>
<tr>
<td>A1</td>
<td>60</td>
</tr>
</tbody>
</table>
Lossless-Join Decompositions (cont’d)

• Computing the natural join of SGM and AM produces

<table>
<thead>
<tr>
<th>Student</th>
<th>Assignment</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>A2</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>A2</td>
<td>G2</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>A1</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

• The join result contains spurious tuples. Information would be lost if we were to replace Marks by SGM and AM.

• If re-joining SGM and AM would always produce exactly the tuples in Marks, then SGM and AM is called a lossless-join decomposition.
Another Lossless-Join Decomposition Example

Consider the following (BCNF) decomposition of the relation from the parts/suppliers database.

<table>
<thead>
<tr>
<th>Snos</th>
<th>Snames</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pnum</td>
<td>Pname</td>
<td>Price</td>
</tr>
<tr>
<td>Inum</td>
<td>Iname</td>
<td>Price</td>
</tr>
<tr>
<td>I1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>I2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>I3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40</td>
</tr>
</tbody>
</table>
Identifying Lossless-Join Decompositions

- Since schemas, not schema instances, are decomposed, how to be sure that a decomposition is lossless?

- A decomposition \(\{R_1, R_2\} \) of \(R \) is lossless if and only if the common attributes of \(R_1 \) and \(R_2 \) form a superkey for either schema, that is

\[
R_1 \cap R_2 \rightarrow R_1 \text{ or } R_1 \cap R_2 \rightarrow R_2
\]

- Example:

\[
R = \{\text{Student, Assignment, Group, Mark}\}\\
F = \{(\text{Student, Assignment} \rightarrow \text{Group, Mark}), \text{Assignment, Group} \rightarrow \text{Mark}\}\\
R_1 = \{\text{Student, Group, Mark}\} \quad R_2 = \{\text{Assignment, Mark}\}
\]

- Decomposition \(\{R_1, R_2\} \) is lossy because \(R_1 \cap R_2 \) is not a superkey of either SGM or AM
Computing a Lossless-Join BCNF Decomposition

function ComputeBCNF(\(\mathcal{D}, F\)) {
 Result = \(\mathcal{D}\);
 while some \(R \in \text{Result}\) and \(X \rightarrow Y \in F^+\) violate the BCNF condition do {
 remove \(R\) from Result;
 insert \(R - (Y - X)\) into \text{Result};
 insert \(X \cup Y\) into \text{Result};
 }
 return(\text{Result});
}
Decomposition - An Example

- $R = \{\text{Sno, Sname, City, Pno, Pname, Price}\}$

- functional dependencies:
 - Sno \rightarrow Sname, City
 - Pno \rightarrow PName
 - Sno, Pno \rightarrow Price

- This schema is not in BCNF because, for example, Sno determines Sname and City, but is not a superkey of R.

Decomposition - An Example (cont.)

• Using the dependency

\[\text{Sno} \rightarrow \text{Sname, City} \]

\(R \) can be decomposed into

\[R_1 = \{ \text{Sno, Pno, Pname, Price} \} \]
\[R_2 = \{ \text{Sno, Sname, City} \} \]

• \(R_2 \) is now in BCNF (why?) but \(R_1 \) is not, and must be further decomposed.
Decomposition - An Example (cont.)

- Using the dependency

\[\text{Pno} \rightarrow \text{Pname} \]

\(R_1 \) can be decomposed into

\[R_3 = \{ \text{Sno, Pno, Price} \} \]
\[R_4 = \{ \text{Pno, Pname} \} \]

- The complete schema is now

\[R_2 = \{ \text{Sno, Sname, City} \} \]
\[R_3 = \{ \text{Sno, Pno, Price} \} \]
\[R_4 = \{ \text{Pno, Pname} \} \]

- This schema is a lossless-join, BCNF decomposition of the original schema \(R \).
Decomposition Diagram

\{\text{Sno, Sname, City, Pno, Pname, Price}\}

\text{Sno} \rightarrow \text{Sname, City}

\{\text{Sno, Pno, Pname, Price}\} \quad \{\text{Sno, Sname, City}\}

\text{Pno} \rightarrow \text{Pname}

\{\text{Sno, Pno, Price}\} \quad \{\text{Pno, Pname}\}
Dependency Preservation

- Ideally, a decomposition would be dependency preserving as well as lossless.

- Dependency preserving decompositions allow for efficient testing of constraints on the decomposed schema.

- Consider a relation schema $R = \{\text{Proj, Dept, Div}\}$ with functional dependencies

 FD1: Proj \rightarrow Dept
 FD2: Dept \rightarrow Div
 FD3: Proj \rightarrow Div

- Consider two decompositions

 $D_1 = \{R1 = \{\text{Proj, Dept}\}, R2 = \{\text{Dept, Div}\}\}$

 $D_2 = \{R1 = \{\text{Proj, Dept}\}, R3 = \{\text{Proj, Div}\}\}$

- Both are lossless. (Why?)
Dependency Preservation (cont’d)

• Decomposition D_1 lets us test FD1 on table R1 and FD2 on table R2; if they are both satisfied, FD3 is automatically satisfied.

• In decomposition D_2 we can test FD1 on table R1 and FD3 on table R3. Dependency FD2 is an interrelational constraint: testing it requires joining tables R1 and R3.

• Let R be a relation schema and F a set of functional dependencies on R. A decomposition $D = \{R_1, \ldots, R_n\}$ of R is dependency preserving if there is an equivalent set F' of functional dependencies, none of which is interrelational in D.

It is possible that no dependency preserving BCNF decomposition exists. Consider $R = ABC$ and $F = \{AB \rightarrow C, C \rightarrow B\}$.