Data Streaming

Lukasz Golab
lgolab@uwaterloo.ca
engineering.uwaterloo.ca/~lgolab
Outline

• Context
• Relatively slow streams
• Relatively fast streams
Big Data

• Every 2 days the world creates as much information as it did up to 2003
 – (Eric Schmidt, Google CEO)
Why Now?

1. Easier/cheaper to generate data
 - Sensors, smart devices
 - Internet of Things
 - Social software
 - Web data

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)
Why Now?

• 2. Easier/cheaper to process data
 – Cheap hard drives and SSDs
 – Cheap commodity hardware

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)
Why Now?

3. Data Democratization
 - Anyone can get involved in data, not just database people
 - Open-source software
 - Cloud computing
 - Open data initiatives

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)
3 Vs of Big Data

- Volume
- Velocity -> data streams
- Variety
Data Streams

• Many interesting data arrive over time
• Think of the schema as
 – (key, timestamp, other attributes)
• Or maybe new keys trickle in
 – data extraction
Data Processing

• Typical big data workflow
 – Collect all data, prepare, load, process, repeat if necessary

• Typical streaming workflow
 – Process as data are coming in
 – Reduce the time “from ingest to insight”
Slow vs. Fast Streams

• Slow
 – ..enough that you can use a DBMS
 – maybe one file every 5 minutes (batch)
 – don’t need to do real-time processing

• Fast
 – Thousands/Millions of records per second
Outline

• Relatively slow streams
Application: WeBike
Data Flow
Data Layout

• Partition by time
Data Layout

• New data loaded to new partition; existing partitions are not touched
 – Except out-of-order data
• Logically one table, physically many tables
 – Index on the table directory
• How big should each partition be?
 – Small partitions: easy to add new data, but queries spanning a long history will be slow

• Solution: merge partitions as they age
Out-of-order Data

- Different data sources have different time lags and different likelihoods of late data
- How do I know when my data are stable enough to query?
Out-of-order Data

• Assign labels to each partition
 – Open = more data may be added
 – Closed = no more data expected
 – Complete = Closed and all expected data have arrived (i.e., no data permanently lost)
 – …
Example

• Closed up to 11:45
• Note: completeness not always contiguous
Partition Labels

• Of course, this works only if we can verify closed-ness and completeness
 – E.g., each of our 30 e-bikes produces a file every minute and keeps it for a day
Queries over Slow Streams

• Traditional database: query workload usually not known ahead of time
• Streaming: users ask the same queries over time
Incremental Query Processing

• E.g., what was the total riding distance of each person within the last 7 days?
• Naïve approach: every day, recompute the query
• Faster approach: every day, incrementally update the query
 – But have to store extra information
Incremental Query Processing

235

=235+10-50

50 17 22 40 28 35 43 10
Also...

- If we know (some of) the queries, we can try to do shared processing
 - Or reorder them for better cache performance
Recap

• Handling relatively slow streams/real-time response not needed
 – Can use a regular DBMS
 – Consider partitioning by time to speed up insertions
 – Consider keeping extra information to enable incremental query processing
For More Information

• Golab, Johnson, Seidel, Shkapenyuk, Stream Warehousing with DataDepot, SIGMOD 2009
• Golab, Johnson, Consistency in a Stream Warehouse, CIDR 2011
• Golab, Johnson, Shkapenyuk, Scalable Scheduling of Updates in Streaming Data Warehouses, TKDE 2012
• Baer, Golab, Ruehrup, Schiavone, Casas, Cache-Oblivious Scheduling of Shared Workloads, ICDE 2015
Outline

• Relatively fast streams
 – … too fast to use a traditional DBMS
 – So we need to design a new system
 – Call it DSMS
Simple Example

• Network firewall
• Streaming input -> drop packets that fail some criteria -> streaming output
• Simple SELECT FROM WHERE streaming query
Streaming Queries

• At any point in time, returns the same answer as an equivalent SQL query over a relation consisting of the stream seen so far
How Does it Work

• No time to “load” the data
• Quickly look up the attribute of interest (e.g., port number or source IP address) in each packet
• Drop or pass on to the output stream
• Move on to the next packet
Simple DSMS

- Simple WHERE predicates
- Pre-defined queries
- Pre-defined stream schema
 - Need to tell the system where to find each attribute
 - But not all fields inside an IP packet are fixed-offset
 - And may want to filter on payload contents
More Complex Example

SELECT timestamp/60, src, dest, sum(bytes)
FROM IP_STREAM
GROUP BY timestamp/60, src, dest

Per-minute traffic for each src/dest pair
How Does it Work

• Maintain a hash table on src/dest storing sum(bytes)
• At the end of each minute, output the sums for each src/dest pair and clear the hash table
 – GROUP BY condition must include the timestamp, which splits the stream into windows
What if the stream is really, really fast?

• Resort to approximate answers
 – Sampling
 – One-pass algorithms
Recap

• Data Stream Management Systems (DSMS)
 – SQL-like language (but not full SQL)
 – Stream-in -> Stream-out
 – Predefined queries

• Approximate one-pass stream algorithms for dealing with very high velocities
For More Information

• Golab, Johnson, Spatscheck, Prefilter: Predicate Pushdown at Streaming Speeds, SSPS 2008
• Golab, Oszu, Data Stream Management, Morgan & Claypool, 2010
Summary

• Data Stream Processing
 – Batch-oriented vs real-time
 – Adapting existing data management technologies (slow)
 – Developing new systems (fast)
Open Problems

• Distributed/cloud stream processing
• Can help deal with very fast streams
 – Many DSMSs can process a stream in parallel
• Also helpful for slower streams
 – Already some work on incremental computation in Hadoop/MapReduce