
Data Streaming

Lukasz Golab
lgolab@uwaterloo.ca

engineering.uwaterooo.ca/~lgolab

Outline

•  Context
•  Relatively slow streams
•  Relatively fast streams

Big Data
•  Every 2 days the world creates as much

information as it did up to 2003
–  (Eric Schmidt, Google CEO)

Why Now?

•  1. Easier/cheaper to generate data
– Sensors, smart devices
–  Internet of Things
– Social software
– Web data

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)

Why Now?

•  2. Easier/cheaper to process data
– Cheap hard drives and SSDs
– Cheap commodity hardware

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)

Why Now?

•  3. Data Democratization
– Anyone can get involved in data, not just

database people
– Open-source software
– Cloud computing
– Open data initiatives

Source: Abadi et al., The Beckman Report on Database Research, SIGMOD Record 43(3)

3 Vs of Big Data

•  Volume
•  Velocity -> data streams
•  Variety

Data Streams

•  Many interesting data arrive over time
•  Think of the schema as

–  (key, timestamp, other attributes)
•  Or maybe new keys trickle in

– data extraction

Data Processing

•  Typical big data workflow
– Collect all data, prepare, load, process, repeat

if necessary
•  Typical streaming workflow

– Process as data are coming in
– Reduce the time “from ingest to insight”

Slow vs. Fast Streams

•  Slow
–  ..enough that you can use a DBMS
– maybe one file every 5 minutes (batch)
– don’t need to do real-time processing

•  Fast
– Thousands/Millions of records per second

Outline

•  Relatively slow streams

Application: WeBike

Data Flow

Disk

Database

Apps

Data Layout

•  Partition by time

Time

Data

Index

New data

Data Layout

•  New data loaded to new partition; existing
partitions are not touched
– Except out-of-order data

•  Logically one table, physically many tables
–  Index on the table directory

Data Layout Optimization

•  How big should each partition be?
– Small partitions: easy to add new data, but

queries spanning a long history will be slow
•  Solution: merge partitions as they age

Time

Data

Index

Indexes optional

Out-of-order Data

•  Different data sources have different time
lags and different likelihoods of late data

•  How do I know when my data are stable
enough to query?

Out-of-order Data

•  Assign labels to each partition
– Open = more data may be added
– Closed = no more data expected
– Complete = Closed and all expected data

have arrived (i.e., no data permanently lost)
– …

Example

•  Closed up to 11:45
•  Note: completeness not always contiguous

10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00

open closed closed complete complete complete complete

time

complete

Partition Labels

•  Of course, this works only if we can verify
closed-ness and completeness
– E.g., each of our 30 e-bikes produces a file

every minute and keeps it for a day

Queries over Slow Streams

•  Traditional database: query workload
usually not known ahead of time

•  Streaming: users ask the same queries
over time

Incremental Query
Processing

•  E.g., what was the total riding distance of
each person within the last 7 days?

•  Naïve approach: every day, recompute the
query

•  Faster approach: every day, incrementally
update the query
– But have to store extra information

Incremental Query
Processing

50 17 22 40 28 35 43 10

235

=235+10-50

Also…

•  If we know (some of) the queries, we can
try to do shared processing
– Or reorder them for better cache performance

Recap

•  Handling relatively slow streams/ real-time
response not needed
– Can use a regular DBMS
– Consider partitioning by time to speed up

insertions
– Consider keeping extra information to enable

incremental query processing

For More Information
•  Golab, Johnson, Seidel, Shkapenyuk, Stream

Warehousing with DataDepot, SIGMOD 2009
•  Golab, Johnson, Consistency in a Stream Warehouse,

CIDR 2011
•  Golab, Johnson, Shkapenyuk, Scalable Scheduling of

Updates in Streaming Data Warehouses, TKDE 2012
•  Baer, Golab, Ruehrup, Schiavone, Casas, Cache-

Oblivious Scheduling of Shared Workloads, ICDE 2015

Outline

•  Relatively fast streams
– … too fast to use a traditional DBMS
– So we need to design a new system
– Call it DSMS

Simple Example

•  Network firewall
•  Streaming input -> drop packets that fail

some criteria -> streaming output
•  Simple SELECT FROM WHERE

streaming query

Streaming Queries

•  At any point in time, returns the same
answer as an equivalent SQL query over a
relation consisting of the stream seen so
far

How Does it Work

•  No time to “load” the data
•  Quickly look up the attribute of interest

(e.g., port number or source IP address) in
each packet

•  Drop or pass on to the output stream
•  Move on to the next packet

Simple DSMS

•  Simple WHERE predicates
•  Pre-defined queries
•  Pre-defined stream schema

– Need to tell the system where to find each
attribute

– But not all fields inside an IP packet are fixed-
offset

– And may want to filter on payload contents

More Complex Example

SELECT timestamp/60, src, dest,
sum(bytes)

FROM IP_STREAM
GROUP BY timestamp/60, src, dest

(timestamp,
src/dest,
bytes) Per-minute traffic

for each src/dest pair

How Does it Work

•  Maintain a hash table on src/dest storing
sum(bytes)

•  At the end of each minute, output the
sums for each src/dest pair and clear the
hash table
– GROUP BY condition must include the

timestamp, which splits the stream into
windows

What if the stream is really,
really fast?

•  Resort to approximate answers
– Sampling
– One-pass algorithms

Recap

•  Data Stream Management Systems
(DSMS)
– SQL-like language (but not full SQL)
– Stream-in -> Stream-out
– Predefined queries

•  Approximate one-pass stream algorithms
for dealing with very high velocities

For More Information
•  Cranor, Johnson, Spatscheck, Shkapenyuk, The

Gigascope Stream Database, IEEE DE Bul, 26(3), 2003
•  Golab, Johnson, Spatscheck, Prefilter: Predicate

Pushdown at Streaming Speeds, SSPS 2008
•  Golab, Ozsu, Data Stream Management, Morgan &

Claypool, 2010

Summary

•  Data Stream Processing
– Batch-oriented vs real-time
– Adapting existing data management

technologies (slow)
– Developing new systems (fast)

Open Problems

•  Distributed/cloud stream processing
•  Can help deal with very fast streams

– Many DSMSs can process a stream in parallel
•  Also helpful for slower streams

– Already some work on incremental
computation in Hadoop/MapReduce

