
Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L.,

Leiser, N., Czjkowski, G.

Speaker: Chong Li

Department: Applied Health Science

Program: Master of Health

Informatics

1

 Term explanation

Motivation & Introduction

 Computation Model

 System Implementation

 Experiment

 Conclusion & Future Work

 Application

2

Graph Database: a storage system that uses

graph representations for data where each

node represents an entity with unique id,

type and properties.

 Superstep: iteration that is used for graph

algorithm in Pregel . It can be viewed as sort

of a barrier for parallel-y executing entities.

3

4

Daddies?

Yes?

Larry Page& Sergey Brin, 2

geniuses brought a

surprise to this world in

1998:

-Google

5

-- 70 offices in more than 40 countries

-- Products include search tools, security tools, map-related

products, etc.

-- More and more information is collected and stored in

geographically different offices.

Distributed

computation?

6

 80% of google distributed computation is based

on MapReduce (Google Map, Google Translate,

etc).

 --can take advantage of locality of data,

processing it on or near the storage assets in

order to reduce the distance over which it must

be transmitted

MapReduce!

7

Challenges faced by MapReduce:

Many practical computing problems concern
large-scale graphs- such as shortest path.

MapReduce, however :

- A lot of I/O due to passing the entire state of the graph

from one stage to the next.

- Too many iterations are needed for parallel graph

processing

MapReduce?

8

Need for a scalable distributed solution

with features of :
--Scalable and Fault-tolerant platform

--API with flexibility to express arbitrary graph algorithm

--Vertex centric computation (Think like a vertex) –pg.14

9

Need for a scalable distributed solution

with features of :
--Scalable and Fault-tolerant platform

--API with flexibility to express arbitrary algorithm

--Vertex centric computation (Think like a vertex)

Pregel!

10

 Pregel is a system for large-scale graph
processing. It provides a fault-tolerant
framework for the execution of graph algorithms
in parallel over many machines.

 Pregel model retains worker state (the same
worker is responsible for the same set of nodes)
across iteration, the graph can be loaded in
memory once and reuse across iterations.

 Pregel only sends local computed result over the
network, which implies the minimal bandwidth
consumption.

Note: Pregel is not a database because no key-
value store or any new means of storing is used
in this Google product.

11

Bulk Synchronic

Parallel model (BSP)

12

Input

Output

Supersteps
(a sequence of iterations)

13

 In Superstep: the vertices compute in parallel

 Each vertex

 Receives messages sent in the previous superstep

 Executes the same user-defined function

 Modifies its value or values of its outgoing edges

 Sends messages to other vertices (to be received in the

next superstep)

 Mutates the topology of the graph

 Votes to halt if it has no further work to do

--Vertex centric computation

14

Vertex State Machine

•Termination condition

•All vertices are simultaneously inactive

•There are no messages in transit

15

 Pregel system also uses the master/worker
model

 Master
 Maintains worker

 Recovers faults of workers

 Provides Web-UI monitoring tool of job progress

 Worker
 Processes its task

 Communicates with the other workers

 Persistent data is stored as files on a
distributed storage system (such as GFS or
BigTable)

 Temporary data is stored on local disk

16

1. Many copies of the program begin executing on a cluster of

machines

2. Master partitions the graph and assigns one or more

partitions to each worker

3. Master also assigns a partition of the input to each worker

 Each worker loads the vertices and marks them as active

17

4. The master instructs each worker to perform a
superstep

 Each worker loops through its active vertices &

computes for each vertex

 Messages are sent asynchronously, but are delivered

before the end of the superstep

Note: This step is repeated as long as any vertices are

active, or any message is in transit

5. After the computation halts, the master may
instruct each worker to save its portion of the
graph

18

 Checkpointing

 The master periodically instructs the workers to save the

state of their partitions to persistent storage system

 e.g., Vertex values, edge values, incoming messages

 Failure detection

 Using regular “ping” messages

 Recovery

 The master reassigns graph partitions to the currently

available workers

 The workers all reload their partition state from most

recent available checkpoint

19

Worker can combine messages reported by its

vertices and send out one single message

 Reduce message traffic and disk space

20

 Used for global communication, global data and

monitoring

21

22

 Environment

 H/W: A cluster of 300 multicore commodity PCs

 Data: binary trees, log-normal random graphs
(general graphs)

Naïve SSSP implementation (single-source
shortest path)

 The weight of all edges = 1

 No checkpointing- because of short runtime

23

 SSSP – 1 billion vertex binary tree: varying #

of worker tasks

24

 SSSP – binary trees: varying graph sizes on
800 worker tasks

25

 SSSP – Random graphs: varying graph sizes on
800 worker tasks

26

 Pregel is a scalable and fault-tolerant platform
with an API that is sufficiently flexible to express
arbitrary graph algorithms

 Future work

 Relaxing the synchronicity of the model

 Not to wait for slower workers at inter-superstep barriers

 Assigning vertices to machines to minimize inter-

machine communication

 Caring dense graphs in which most vertices send

messages to most other vertices

27

 Single Source Shortest Path

 Find shortest path from a source node to all

target nodes

28

0









10

5

2 3

2

1

9

7

4 6 Inactive Vertex

Active Vertex

Edge weight

Message

x

x

29

0









10

5

2 3

2

1

9

7

4 6

10

5

















Inactive Vertex

Active Vertex

Edge weight

Message

x

x

30

0

10

5





10

5

2 3

2

1

9

7

4 6
Inactive Vertex

Active Vertex

Edge weight

Message

x

x

31

0

10

5





10

5

2 3

2

1

9

7

4 6

11

7

12

8
14

Inactive Vertex

Active Vertex

Edge weight

Message

x

x

32

0

8

5

11

7

10

5

2 3

2

1

9

7

4 6
Inactive Vertex

Active Vertex

Edge weight

Message

x

x

33

0

8

5

11

7

10

5

2 3

2

1

9

7

4 6

9

14

13

15

Inactive Vertex

Active Vertex

Edge weight

Message

x

x

34

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6
Inactive Vertex

Active Vertex

Edge weight

Message

x

x

35

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6

13

Inactive Vertex

Active Vertex

Edge weight

Message

x

x

36

0

8

5

9

7

10

5

2 3

2

1

9

7

4 6
Inactive Vertex

Active Vertex

Edge weight

Message

x

x

37

--Any question?

38

