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The Data Mining Tasks 

• Discovering patterns in large data sets 
(knowledge) 
 

• Data mining vs machine learning? 
   - Lines are blurred 
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• One Click: 

   - 6 attributes 

   - 1 label 
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Google’s Bounce Rate Prediction 

Problem 
• 6 attributes 
    - search query of the click 

    - advertiser chosen keyword 

    - ad text 

    - estimated clickthrough rate of the ad click 

    - numeric similarity score 

    - whether the ad matches the query 

• 1 label 
    - bounce or not 
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Supervised Learning - Data Model 

• Set of attributes 

 

• Output 

 

• Training data set (the ith vector) 
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Supervised Learning - Task 

• Given the training dataset 

 

 

• Goal: to learn a mapping model 
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Google’s Bounce Rate Prediction 

Problem 
• Given 6 attributes 
    - search query of the click 

    - advertiser chosen keyword 

    - ad text 

    - estimated clickthrough rate of the ad click 

    - numeric similarity score 

    - whether the ad matches the query 

 

• Want to know if it is going to be a bounce? 
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Supervised Learning - Task 

• Given the training dataset 

 

 

• Goal: to learn a mapping model 

 

 

• Tree models 

   - Capable of modeling complex tasks 
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Tree Model 

• Goal: to learn a mapping model 

 

 

• Recursively partitioning the input data space 

into non-overlapping regions 

 

• Simple model each region 

   - constant 

   - simple function 
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Tree Model 

• Easy to interpret; thus popular 
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Bishop, Christopher M. Pattern recognition and machine learning. Vol. 1. New York: springer, 2006. 



Learning Tree Model 

• Greedy learning algorithm 

 
   Input: node n, training dataset D 

 

   1) fully scan D, find the best split, by maximizing ‘purity’ 

 

 

   2) for either branch 

       - if stopping criteria satisfied: pure region 

       - else: advance a level 
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Google’s Bounce Rate Prediction 

Problem 
• 'Bounce' 
• High bounce rate = poor user experience 
• Task: predicting bounce rate with data on 

hand 
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What if  big data? 



Learning Tree Model 

• Greedy learning algorithm 

 
   Input: node n, training dataset D 

 

   1) fully scan D, find the best split 

 

   2) for either branch 

       - if stopping criteria satisfied: pure region 

       - else: build a higher-level node 
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- out of memory 
- hard disk slow 



Solution – Scaling Up Tree Learning 

•  Fully scan D, find the best split 

 

• By Google Research, 2009 
   - Computer Cluster 

   - MapReduce 

   - Tree learning 
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- out of memory 
- hard disk slow 

Panda, Biswanath, et al. "Planet: massively parallel learning of tree 
ensembles with mapreduce." Proceedings of the VLDB Endowment 2.2 
(2009): 1426-1437. 
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Computer Cluster 

• Controller and workers 
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Source: Wikepedia 



MapReduce Framework 

• Objective: to easily handle data too large to fit 

in memory 
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MapReduce Framework 

• Objective: to easily handle data too large to fit 

in memory 

 

• It does all the dirty work: 
   - distribute the data 

   - parallelize the computation 

   - handle failures 

 

• User simply writes Map and Reduce functions 

27 



Computer Cluster 

• Core: Controller 
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Source: Wikepedia 



Job of Controller 

• Keeps model file (M), containing the entire 
tree constructed so far 
 

• Partitions the whole training dataset, across 
a set of mappers 
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Job of Controller 

• Each tree node, detects size of data set 
 

   if  single machine ok? 

      -> push to ‘SmallData Queue’ 

   else 

      -> push to ‘LargeData Queue’ 

 

• Schedules jobs in both queues for workers 
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Job of Workers 

• Map and Reduce functions 
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Source: Wikepedia 



MapReduce Work - SmallData Queue 

• Map function 
   - input: 
          partitioned training set Dk  
          node n 
          Model file M 
 
   - check if an instance input to n -> emits 
 
   - output (list):  
          key = node n 
          value = subset of Dk input to n  
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MapReduce Work - SmallData Queue 

• Reduce function 
   - input:  
          key = node n 
          value = subset of Dk input to n 
 
   - loads training records in memory 
   - single-machine algorithm to find the split 
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In this way, cluster can process many nodes in parallel to 
grow the tree 

 



MapReduce Work – LargeData Queue 

• Ordered attribute vs. Unordered 
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Compare adjacent pairs 

Troublesome; 
Breiman Method 



MapReduce Work – LargeData Queue 

• Map function 
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MapReduce Work – LargeData Queue 

• Reduce function 
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Walkthrough 

• Training set D* 
    - 100 instances 

 

• Memory constraint  
    - 25 instances 

 

• Stopping criteria 
    - instances <= 10 
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Walkthrough 
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Ordered 
attribute 

|D| = 100 A-> LargeData Queue 
     -> Ordered node splitting 



Walkthrough 
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Stop 

Average of Labels 



Walkthrough 
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B-> LargeData Queue 
     -> Unordered node splitting 

Unordered attribute 



Walkthrough 
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D -> LargeData Queue LargeData Queue <- C 



Walkthrough 
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E, F, G -> SmallData Queue H-> LargeData Queue 



Walkthrough 
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Setup 

• Bounce rate prediction problem 

 

• 314 million records 
   - 10 features  

   - 1 label 

 

• Each machine 768MB memory 
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Time to Train vs. Data Size 

• Works well 
    - 25 nodes 
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Time to Train vs. Data Size 

• Works well 
    - 25 nodes 

    - 50 

    - 100 

    - 200 
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Time to Train vs. Data Size 

• 400 workers  

    worse than 200? 

 

• Cluster  

   Management 

 
  - network overhead 

  - failure watching 

  - schedule backups 

  - data distribution &  

       collection 
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Time to Train vs. Tree Depth 

• With/without  

   ‘SmallData  

     Queue’ 
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Time to Train vs. Tree Depth 

• With/without  

   ‘SmallData  

     Queue’ 

 
  - overhead of  

     cluster management 

  - sampling based  

     method on single  

     machine 

53 



Error Reduction vs Num of Trees 

• Boosted tree model 

 
   - a bundle of weighted 

     weak learners: better  

     performance 
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Error Reduction vs Num of Trees 

• Boosted tree model 

 
   - a bundle of weighted 

     weak learners: better  

     performance 

 

   - better weak learners 

     faster error reduction 
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Conclusion 

• Successfully scales up tree learning with 

MapReduce 

• Performs well 

• Pioneered large-scale machine learning 
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Related Work – Survey 
Learning 
Setting 

Algorithm Cluster 
Nodes 

Parallelizati
on 
Framework 

Speedup 

Regression Decision Tree 200 MapReduce 100 

Classification SVM 500 MPI 100 

Ranking LambdaMART 32 MPI 10 

Inference Loopy belief 
propagation 

40 MPI 23 

Inference MCMC 1024 MPI 1000 

Clustering Spectral 
clustering 

256 MapReduce, 
MPI 

256 

Clustering Information-
theoretic 
clustering 

400 MPI 100 
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Bekkerman, Ron, Mikhail Bilenko, and John Langford, eds. Scaling up machine learning: Parallel 
and distributed approaches. Cambridge University Press, 2011. 



Go on. I dare you. 
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Source: 
Linkedin 
sharing 
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