
Dynamo: Amazon’s Highly
 Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, Werner Vogels

SOSP(2007)

Presenter: Shichao Jin

Outline

 Background

 Design Principles

 Techniques

 Conclusion

Background

 Amazon Shopping Carts

 low-latency key-value storage

 Put() & Get()

 SLA: response within 300ms for 99.9% of requests

 hundreds of nodes

 a collection of distributed techniques

 spawned many imitators

 Voldemort (LinkedIn)

 Cassandra (Facebook)

Design Principles

 Always-writable

 Incrementally scalable

 Symmetrical

 Decentralized

 Heterogenous

Techniques

Problem Technique

Partitioning Consistent hashing

High availability for writes

Eventual consistency,

Vector clocks with reconciliation during
reads

Handling temporary failures

Sloppy quorum protocol and hinted
handoff

Recovering from permanent failures Anti-entropy using Merkle trees

Membership and failure detection
Gossip-based membership protocol and
failure detection

Partition——Consistent Hashing

 m nodes

 items identified by keys

 How to partition items to m nodes?

Partition——Consistent Hashing

node0 node1 node2 node3

11%4=3

102%4=2

Partition——Consistent Hashing

Disadvantages of hash:

 static, rehash when add/delete node(s)

Solution:

 Consistent Hashing

Partition——Consistent Hashing

Consistent Hashing:

 hash space: ring

 each node manages a region

 all rehash is unnecessary

Partition——Consistent Hashing

add node3

delete node1

Partition——Consistent Hashing

Problems of Consistent Hashing:

 non-uniform load distribution

 heterogeneity

Solution:

 Virtual Nodes

Partition——Consistent Hashing

Virtual Nodes:

 disperse load to other nodes when a node fails

Replication

An Example for Replication

 N = 3

 B, C, D is K’s preference list

 for fault-tolerance

 for availability

High Availability for Writes

Concurrent Writes:

 Application: Shopping Cart

 Two-Phase Commit in distributed RDBMS

High Availability for Writes

Concurrent Writes:

 Problem: 2 (more) versions of a data item

 Possible Solution: timestamp (How?)

 Dynamo: Vector Clocks

N1 N2 N3

K14 V14 K14 V14 K14 V14 K14 V14’ K14 V14’’

High Availability for Writes

Vector Clocks:

 logical clock

 causal order (partial)

High Availability for Writes

How to determine ordering of versions?

 (A:1, B:1, C:1) < (A:3, B:1, C:1)

 (A:1, B:1, C:1) ? (A:2, C:1)

Consistency——Strict Quorum

Eventual Consistency:

 given enough time all updates will propagate

through the system

 Read after Write

N1 N2 N3

K14 V14 K14 V14 K14 V14 K14 V14’ K14 V14’

Consistency——Strict Quorum

Strict Quorum:

 see the latest data

 define a replica set of size N

 put() waits for acks from at least W replicas

 get() waits for responses from at least R replicas

 W+R > N

Consistency——Strict Quorum

Strict Quorum Example:

 N=3, W=2, R=2

 replica set for K14: {N1, N2, N3}

 assume put() on N3 fails

N1 N2 N3

K14 V14 K14 V14

p
u
t(

K
1

4
,

V
1

4
)

Consistency——Strict Quorum

Strict Quorum Example:

 Now, issuing get() to any two nodes out of three will

return the answer

N1 N2 N3

K14 V14 K14 V14

g
e

t(K
1

4
)

n
ill

Consistency——Strict Quorum

Why does Strict Quorum works?

Tune W, R, N:

 optimized for write, set W small

 optimized for read, set R small

W R

Temporary Failure ——Hinted Handoff

Hinted Handoff (Sloppy Quorum)

 node accepts writes for other down nodes

 data accepted by other node is handed off when

down node recovers

 set W = 3, N = 3

 do not wait B recover

Temporary Failure ——Hinted Handoff

 Sloppy Quorum

Permanent Failure ——Replica Synchronize

Replica Synchronization (Merkle tree)

 hierarchical checksums

 executed periodically or when membership changes

Permanent Failure ——Replica Synchronize

Replica Synchronization (Merkle tree)

 hierarchical checksums

 executed periodically or when membership changes

Permanent Failure ——Replica Synchronize

Replica Synchronization (Merkle tree)

 hierarchical checksums

 executed periodically or when membership changes

Conclusion

 Consistent Hashing

 Vector Clocks

 Eventual consistency

 Strict & Sloppy Quorum

 Merkel Tree

References

 Dynamo Paper

 KaiAn: Open Source Implementation of Amazon’s

Dynamo

 UCB CS162: Key-Value Store, Networking, Protocols

 A Little Riak Book by Eric Redmond

Q & A

