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Introduction

● Bigtable is a distributed Storage system for managing 
structured data at Google.

● Bigtable has achieved several goals: wide applicability, 
scalability, high performance, and high availability.

● Bigtable does not support full relational data model.Instead, it 
provides the clients with a simple data model.

● Data is indexed using row and column names that can be 
arbitrary strings.



Data Model

● Bigtable is a sparse, distributed, persistent, 
multidimensional sorted map.

● Map is indexed by a row key, column key, and a timestamp.
● (row:string, column:string, time:int64) -> string



Data model : Row Keys

● Row keys are arbitrary strings.
● Every read and write of data under a single row 

key is atomic.
● Bigtable maintains data in lexicographic order by 

row key.
● Each row range is called a tablet.



Data Model: Column Families

● Column keys are grouped into sets called column families.
● Column key is named using the following syntax: family:

qualifier
● Basic units of access control.



Data model: Timestamps

● Each cell in Bigtable can contain multiple 
versions of same data.

● Decreasing order: read the most recent version 
first.

● Bigtable garbage-collects cell versions 
automatically.



Data Model

● API
○ Functions for creating and deleting tables and column 

families, changing clusters, tables and column family 
metadata (access control rights).

○ Client applications can write/delete values in the Bigtable, 
look up values from individual rows, columns, or iterate 
over a subset of the data from the table.



Data Model

● Building Blocks
○ GFS:Google File System-stores log and data files.
○ Google SSTable File format- provides a persistent, 

ordered immutable map from keys to values.
○ Chubby- highly available and persistent distributed lock 

service.



Implementation

● A library that is linked into every client.
● A Master Server
● Tablet Servers



Implementation

Master server
● The master is responsible for assigning tablets to tablet 

servers.
● Detecting the addition or expiration of tablet servers.
● Balancing the tablet server load.
● Garbage collection.
● Handle schema changes.



Implementation

Tablet server
● Tablet servers can be added and removed dynamically from a 

cluster to accommodate changes in the workload.
● Each tablet server manages a set of tablets.
● Tablet server handles read and write requests
● Also splits tablets that have grown too large.
● Clients communicate directly with the tablet server.



Implementation: Tablet location

● Three-level hierarchy



Implementation: Tablet Assignment

● Each tablet is assigned to one tablet server at a time.
● Bigtable uses chubby to keep track of tablet servers.
● When a tablet is unassigned, and a tablet server with 

sufficient room for the tablet is available, the master assigns 
the tablet by sending a tablet load request to the tablet server.

● Master periodically asks the tablet servers for the status of its 
lock.



Implementation: Tablet Serving
● The persistent state of a tablet is stored in GFS as shown in the figure.
● Updates are committed to a commit log.
● The recently committed updates are stored in the memory in a sorted buffer called 

a memtable; older updates are stored in a sequence of SSTables.



Implementation: Compaction

● Minor Compaction
○ When the memtable size reaches a threshold, the 

memtable is frozen, a new memtable is created and the 
frozen memtable is converted to an SSTable and written 
to the GFS.

● Major Compaction
○ A merging compaction that rewrites all SSTables into 

exactly one SSTable.



Refinements
● Locality groups

○ Clients can group multiple column families together into a locality group.
● Compression

○ Clients can control whether or not SSTables for a locality group are compressed, and if so, which 
compression format is used.

● Caching for read performance
○ Two-level caching.

● Bloom filters
○ It allows to ask whether an SSTable might contain any data for a specified row/column pair.

● Commit-log implementation
○ Single commit log per tablet server.

● Speeding up tablet recovery
○ A minor compaction reduces recovery time by reducing the amount of uncompacted state in the 

tablet server’s commit log.
● Exploiting immutability 

○ SSTables generated are immutable and enables Bigtable to split tablets quickly.



Performance Evaluation
● Single tablet-server performance

○ Random reads are slower than all other operations.
○ Random reads from the memory are much faster.
○ Random and sequential writes perform better than random reads.
○ Sequential reads perform better than random reads.
○ Scans are even faster.

● Scaling
○ Aggregate throughput increases.
○ Performance does not increase linearly.
○ For most benchmarks, there is a significant

drop in per server throughput.



Real Applications

● Google Analytics
● Google Earth
● Personalized Search
● Web Indexing
● Google Finance
● Orkut
● Writely



Conclusion

● Bigtable is a distributed system for storing 
structured data at Google.

● Significant advantages of building own storage 
system at Google.

● Users like the performance and high availability 
that is provided by Bigtable.


