
Analysis of Hadoop 

Online

Xin Zhan

CS 848



Recap of MapReduce



Fault Tolerance

� Both map and reduce write output to 

disk.

� Materialization simplifies fault 

tolerance. 

� If any task fails, JobTracker simply 

schedule a new task.



Life Beyond Batch 

Processing

� Online aggregation

� Continuous analysis of data streams

� Blocking operators � Pipelined 

operators



MapReduce � MapReduce 

Online



MapReduce � MapReduce 

Online

Tyson Condie et al., MapReduce Online, UC Berkeley, 2009 



Pipelined MapReduce

� Reduce task opens a socket with map task

� Map task writes out in-memory buffer to spill 

fills

� Spill files are sent to pipelines, accepted by 

Reducers

� Once map tasks complete, reducer merge 

all spill files and apply user-defined function

� Reduce task can write its final output to 

another map task.



Fault Tolerance – Map 

Failures

� Reducer treats the output of pipelined 

map task as "tentative" until map task 

has committed

� Envision checkpoint mechanism



Fault Tolerance – Reduce 

Failure

� Mapper write complete output file to disk 
before committing, allows map's output to 
be reproduced

� Reducer is NOT blocked waiting for 
complete output of the map task to be 
written to disk

� merge spill files generated by the same 
uncommitted mapper

� won't combine them with the output of other 
map tasks



Online Aggregation

� Data records are incrementally sent to 

reducers

� Reducer can apply reduce functions 

to data received so far, produce 

snapshots

� “Progress score”



Continuous Queries

� Assume continuous reduce function 

depends on a suffix of history of map 

stream.

� Map output is already delivered to 

appropriate reduce tasks, shortly after 

it is generated.

� User-defined functions need to be 

invoked periodically at reducer.



Performance Studies of 

Hadoop Online

� Best case scenario studied in the paper

� Fewer than 1 Map task assigned per node 

� Map task does not filter any data 

� No combiner function 

� Interesting to see how much performance 

improves in less ideal settings

� Understand where the performance 

improvement comes from



Goal of My Experiments

� Measure performance improvements 

when running more Map tasks per 

node

� Isolate sources of improvements

� Reducer job starts early

� Cache vs. disk seeks/reads



Create my own image on 

Amazon EC2

� Modify environment setting bin/hadoop-ec2-
env.sh

� Security keys, S3 bucket, Hadoop version 
(hop_0.1), Base image, Arch

� Modify script image/create-hadoop-image-
remote

� Download and install Hadoop Online 
Prototype

� Run bin/hahoop-ec2 create-image

� Launch cluster / Terminate cluster



Thank You


