
Pig Latin: A Not-So-Foreign

Language for Data Processing

Christopher Olsten, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, Andrew Tomkins

Presented by Dan Welch

Motivation

2

 You‟re a procedural programmer

 You have some data

 You want to analyze it

Motivation

3

 As a procedural programmer…

 May find writing queries in SQL unnatural and too restrictive

 More comfortable with writing code; a series of statements as

opposed to a long query.

Motivation

4

 The Data

 Could be from multiple sources and in different formats

 Data sets are typically huge

 Don‟t need to alter the original data; just need to do reads

 May be very temporary; could discard the data set after

analysis

Motivation

5

 Data analysis goals

 Quick

 Exploit parallel processing power of a distributed system

 Easy

 Be able to write a program or query without a huge learning curve

 Have some common analysis tasks predefined

 Flexible

 Transform a data set(s) into a workable structure without much

overhead

 Perform customized processing

 Transparent

 Have a say in how the data processing is executed on the system

Motivation

6

 Relational Distributed Databases

 Parallel database products expensive

 Rigid schemas

 Data has to be imported into system-managed tables

 Processing requires declarative SQL query construction

 Map-Reduce

 Relies on custom code for even common operations

 Need to do workarounds for tasks that have different data

flows other than the expected MapCombineReduce

Motivation

7

 Relational Distributed Databases

 Sweet Spot: Take the best of both SQL and Map-Reduce;
combine high-level declarative querying with low-level
procedural programming…Pig Latin!

 Map-Reduce

Outline

 System Overview

 Pig Latin (The Language)

 Data Structures

 Commands

 Pig (The Compiler)

 Logical & Physical Plans

 Optimization

 Efficiency

 Pig Pen (The Debugger)

 Conclusion

8

Big Picture

9

•Avro

•Chukwa

•Hbase (Bigtable)

•HDFS (GFS)

•Hive

•Map-Reduce

•Pig

•Zookeeper (Chubby)

Big Picture

10

Pig

Optimize

Compile

Map-Reduce

Statements
Map-Reduce

Statements
Map-Reduce

Statements

Pig Latin

Script

User-

Defined

Functions

Write Results Read Data

Data Model

 Atom – simple atomic value (ie: number or string)

 Tuple

 Bag

 Map

11

Data Model

 Atom

 Tuple – sequence of fields; each field any type

 Bag

 Map

12

Data Model

 Atom

 Tuple

 Bag – collection of tuples

 Duplicates possible

 Tuples in a bag can have different field lengths and field types

 Map

13

Data Model

 Atom

 Tuple

 Bag

 Map – collection of key-value pairs

 Key is an atom; value can be any type

14

Data Model

 Use of data structures

 Increased flexibility in data representation

 Fully nested

 More natural for procedural programmers (target user) than

normalization

 Data is often stored on disk in a nested fashion

 Facilitates ease of writing user-defined functions

 No schema required

15

Data Model

 User-Defined Functions (UDFs)

 Can be used in many Pig Latin statements

 Useful for custom processing tasks

 Can use non-atomic values for input and output

 Currently must be written in Java

16

Speaking Pig Latin

 LOAD

 Input is assumed to be a bag (sequence of tuples)

 Can specify a serializer with „USING‟

 Can provide a schema with „AS‟

17

newBag = LOAD ‘filename’

<USING functionName()>

<AS (fieldName1, fieldName2,…)>;

Speaking Pig Latin

 FOREACH

 Apply some processing to each tuple in a bag

 Each field can be:

 A fieldname of the bag

 A constant

 A simple expression (ie: f1+f2)

 A predefined function (ie: SUM, AVG, COUNT, FLATTEN)

 A UDF (ie: sumTaxes(gst, pst))

18

newBag =

FOREACH bagName

GENERATE field1, field2, …;

Speaking Pig Latin

 FILTER

 Select a subset of the tuples in a bag

 Expression uses simple comparison operators (==, !=, <, >, …)

and Logical connectors (AND, NOT, OR)

 Can use UDFs

19

newBag = FILTER bagName

BY expression;

some_apples =

FILTER apples BY colour != ‘red’;

some_apples =

FILTER apples BY NOT isRed(colour);

Speaking Pig Latin

 COGROUP

 Group two datasets together by a common attribute

 Groups data into nested bags

20

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

Speaking Pig Latin

 Why COGROUP and not JOIN?

21

url_revenues =

FOREACH grouped_data GENERATE

FLATTEN(distributeRev(results, revenue));

Speaking Pig Latin

 Why COGROUP and not JOIN?

 May want to process nested bags of tuples before taking the

cross product.

 Keeps to the goal of a single high-level data transformation per

pig-latin statement.

 However, JOIN keyword is still available:

22

JOIN results BY queryString,

revenue BY queryString;

temp = COGROUP results BY queryString,

revenue BY queryString;

join_result = FOREACH temp GENERATE

FLATTEN(results), FLATTEN(revenue);

Equivalent

Speaking Pig Latin

 STORE (& DUMP)

 Output data to a file (or screen)

 Other Commands (incomplete)

 UNION – return the union of two or more bags

 CROSS – take the cross product of two or more bags

 ORDER – order tuples by a specified field(s)

 DISTINCT – eliminate duplicate tuples in a bag

 LIMIT – Limit results to a subset

23

STORE bagName INTO ‘filename’

<USING deserializer()>;

Compilation

 Pig system does two tasks:

 Builds a Logical Plan from a Pig Latin script

 Supports execution platform independence

 No processing of data performed at this stage

 Compiles the Logical Plan to a Physical Plan and Executes

 Convert the Logical Plan into a series of Map-Reduce statements to

be executed (in this case) by Hadoop Map-Reduce

24

Compilation

 Building a Logical Plan

 Verify input files and bags referred to are valid

 Create a logical plan for each bag defined

25

Compilation

 Building a Logical Plan Example

26

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Compilation

 Building a Logical Plan Example

27

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Compilation

 Building a Logical Plan Example

28

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach

Compilation

 Building a Logical Plan Example

29

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach

Filter

Compilation

 Building a Logical Plan Example

30

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach

Compilation

 Other Optimization Techniques

 Push Down Explodes – Perform FLATTEN operations after JOIN
where possible.

 Push Limits Up – Perform LIMIT operations as soon as possible to
avoid unnecessary processing of intermediate data.

 And a few others having to do with splitting output, avoiding reloading
data sets, and type-casting.

 Also a “cookbook” available online for tips and tricks on how to
structure Pig Latin commands for better performance.

31

Compilation

 Building a Physical Plan

32

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach

Only happens when output is

specified by STORE or DUMP

Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each

COGROUP

33

Load(user.dat)

Filter

Group

Foreach

Map

Reduce

Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each

COGROUP

 Step 2: Push other commands into the

map and reduce functions where

possible

 May be the case certain commands

require their own map-reduce

job (ie: ORDER needs two map-

reduce jobs)

34

Load(user.dat)

Filter

Group

Foreach

Map

Reduce

Compilation

 Efficiency in Execution

 Parallelism

 Loading data - Files are loaded from HDFS

 Statements are compiled into map-reduce jobs

35

Compilation

 Efficiency with Nested Bags

 In many cases, the nested bags created in each tuple of a COGROUP

statement never need to physically materialize

 Generally perform aggregation after a COGROUP and the

statements for said aggregation are pushed into the reduce function

 Applies to algebraic functions (ie: COUNT, MAX, MIN, SUM, AVG)

36

Compilation

 Efficiency with Nested Bags

37

Load(user.dat)

Filter

Group

Foreach

Map

Compilation

 Efficiency with Nested Bags

38

Load(user.dat)

Filter

Group

Foreach

Combine

Compilation

 Efficiency with Nested Bags

39

Load(user.dat)

Filter

Group

Foreach
Reduce

Compilation

 Efficiency with Nested Bags

 Why this works:

 COUNT is an algebraic function; it can be structured as a tree of sub-

functions with each leaf working on a subset of the data

40

SUM

COUNTCOUNTCombine

Reduce

Compilation

 Efficiency with Nested Bags

 Pig provides an interface for writing algebraic UDFs so they can take
advantage of this optimization as well.

 Inefficiencies

 Non-algebraic aggregate functions (ie: MEDIAN) need entire bag to
materialize; may cause a very large bag to spill to disk if it doesn‟t fit
in memory

 Every map-reduce job requires data be written and replicated to the
HDFS (although this is offset by parallelism achieved)

41

Debugging

 Pig-Pen

42

Debugging

 Pig-Latin command window and command generator

43

Debugging

 Sand Box Dataset (generated automatically!)

44

Debugging

 Pig-Pen

 Provides sample data that is:

 Real – taken from actual data

 Concise – as small as possible

 Complete – collectively illustrate the key semantics of each command

 Helps with schema definition

 Facilitates incremental program writing

45

Pig version 0.5.0

 More support for JOINs (outer, left, right)

 Ability to stream data through an external program

 Generally faster performance

 Ability to add types to schemas (ie: int, boolean, etc.)

 Open project so development is ongoing…

46

Conclusion

 Pig is a data processing environment in Hadoop that is

specifically targeted towards procedural programmers

who perform large-scale data analysis.

 Pig-Latin offers high-level data manipulation in a

procedural style.

 Pig-Pen is a debugging environment for Pig-Latin

commands that generates samples from real data.

47

More Info

 Pig, http://hadoop.apache.org/pig/

 Hadoop, http://hadoop.apache.org

48

Anks-

Thay!

http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/
http://hadoop.apache.org/

