
Pig Latin: A Not-So-Foreign

Language for Data Processing

Christopher Olsten, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, Andrew Tomkins

Presented by Dan Welch

Motivation

2

 You‟re a procedural programmer

 You have some data

 You want to analyze it

Motivation

3

 As a procedural programmer…

 May find writing queries in SQL unnatural and too restrictive

 More comfortable with writing code; a series of statements as

opposed to a long query.

Motivation

4

 The Data

 Could be from multiple sources and in different formats

 Data sets are typically huge

 Don‟t need to alter the original data; just need to do reads

 May be very temporary; could discard the data set after

analysis

Motivation

5

 Data analysis goals

 Quick

 Exploit parallel processing power of a distributed system

 Easy

 Be able to write a program or query without a huge learning curve

 Have some common analysis tasks predefined

 Flexible

 Transform a data set(s) into a workable structure without much

overhead

 Perform customized processing

 Transparent

 Have a say in how the data processing is executed on the system

Motivation

6

 Relational Distributed Databases

 Parallel database products expensive

 Rigid schemas

 Data has to be imported into system-managed tables

 Processing requires declarative SQL query construction

 Map-Reduce

 Relies on custom code for even common operations

 Need to do workarounds for tasks that have different data

flows other than the expected MapCombineReduce

Motivation

7

 Relational Distributed Databases

 Sweet Spot: Take the best of both SQL and Map-Reduce;
combine high-level declarative querying with low-level
procedural programming…Pig Latin!

 Map-Reduce

Outline

 System Overview

 Pig Latin (The Language)

 Data Structures

 Commands

 Pig (The Compiler)

 Logical & Physical Plans

 Optimization

 Efficiency

 Pig Pen (The Debugger)

 Conclusion

8

Big Picture

9

•Avro

•Chukwa

•Hbase (Bigtable)

•HDFS (GFS)

•Hive

•Map-Reduce

•Pig

•Zookeeper (Chubby)

Big Picture

10

Pig

Optimize

Compile

Map-Reduce

Statements
Map-Reduce

Statements
Map-Reduce

Statements

Pig Latin

Script

User-

Defined

Functions

Write Results Read Data

Data Model

 Atom – simple atomic value (ie: number or string)

 Tuple

 Bag

 Map

11

Data Model

 Atom

 Tuple – sequence of fields; each field any type

 Bag

 Map

12

Data Model

 Atom

 Tuple

 Bag – collection of tuples

 Duplicates possible

 Tuples in a bag can have different field lengths and field types

 Map

13

Data Model

 Atom

 Tuple

 Bag

 Map – collection of key-value pairs

 Key is an atom; value can be any type

14

Data Model

 Use of data structures

 Increased flexibility in data representation

 Fully nested

 More natural for procedural programmers (target user) than

normalization

 Data is often stored on disk in a nested fashion

 Facilitates ease of writing user-defined functions

 No schema required

15

Data Model

 User-Defined Functions (UDFs)

 Can be used in many Pig Latin statements

 Useful for custom processing tasks

 Can use non-atomic values for input and output

 Currently must be written in Java

16

Speaking Pig Latin

 LOAD

 Input is assumed to be a bag (sequence of tuples)

 Can specify a serializer with „USING‟

 Can provide a schema with „AS‟

17

newBag = LOAD ‘filename’

<USING functionName()>

<AS (fieldName1, fieldName2,…)>;

Speaking Pig Latin

 FOREACH

 Apply some processing to each tuple in a bag

 Each field can be:

 A fieldname of the bag

 A constant

 A simple expression (ie: f1+f2)

 A predefined function (ie: SUM, AVG, COUNT, FLATTEN)

 A UDF (ie: sumTaxes(gst, pst))

18

newBag =

FOREACH bagName

GENERATE field1, field2, …;

Speaking Pig Latin

 FILTER

 Select a subset of the tuples in a bag

 Expression uses simple comparison operators (==, !=, <, >, …)

and Logical connectors (AND, NOT, OR)

 Can use UDFs

19

newBag = FILTER bagName

BY expression;

some_apples =

FILTER apples BY colour != ‘red’;

some_apples =

FILTER apples BY NOT isRed(colour);

Speaking Pig Latin

 COGROUP

 Group two datasets together by a common attribute

 Groups data into nested bags

20

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

Speaking Pig Latin

 Why COGROUP and not JOIN?

21

url_revenues =

FOREACH grouped_data GENERATE

FLATTEN(distributeRev(results, revenue));

Speaking Pig Latin

 Why COGROUP and not JOIN?

 May want to process nested bags of tuples before taking the

cross product.

 Keeps to the goal of a single high-level data transformation per

pig-latin statement.

 However, JOIN keyword is still available:

22

JOIN results BY queryString,

revenue BY queryString;

temp = COGROUP results BY queryString,

revenue BY queryString;

join_result = FOREACH temp GENERATE

FLATTEN(results), FLATTEN(revenue);

Equivalent

Speaking Pig Latin

 STORE (& DUMP)

 Output data to a file (or screen)

 Other Commands (incomplete)

 UNION – return the union of two or more bags

 CROSS – take the cross product of two or more bags

 ORDER – order tuples by a specified field(s)

 DISTINCT – eliminate duplicate tuples in a bag

 LIMIT – Limit results to a subset

23

STORE bagName INTO ‘filename’

<USING deserializer()>;

Compilation

 Pig system does two tasks:

 Builds a Logical Plan from a Pig Latin script

 Supports execution platform independence

 No processing of data performed at this stage

 Compiles the Logical Plan to a Physical Plan and Executes

 Convert the Logical Plan into a series of Map-Reduce statements to

be executed (in this case) by Hadoop Map-Reduce

24

Compilation

 Building a Logical Plan

 Verify input files and bags referred to are valid

 Create a logical plan for each bag defined

25

Compilation

 Building a Logical Plan Example

26

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Compilation

 Building a Logical Plan Example

27

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Compilation

 Building a Logical Plan Example

28

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach

Compilation

 Building a Logical Plan Example

29

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach

Filter

Compilation

 Building a Logical Plan Example

30

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach

Compilation

 Other Optimization Techniques

 Push Down Explodes – Perform FLATTEN operations after JOIN
where possible.

 Push Limits Up – Perform LIMIT operations as soon as possible to
avoid unnecessary processing of intermediate data.

 And a few others having to do with splitting output, avoiding reloading
data sets, and type-casting.

 Also a “cookbook” available online for tips and tricks on how to
structure Pig Latin commands for better performance.

31

Compilation

 Building a Physical Plan

32

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach

Only happens when output is

specified by STORE or DUMP

Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each

COGROUP

33

Load(user.dat)

Filter

Group

Foreach

Map

Reduce

Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each

COGROUP

 Step 2: Push other commands into the

map and reduce functions where

possible

 May be the case certain commands

require their own map-reduce

job (ie: ORDER needs two map-

reduce jobs)

34

Load(user.dat)

Filter

Group

Foreach

Map

Reduce

Compilation

 Efficiency in Execution

 Parallelism

 Loading data - Files are loaded from HDFS

 Statements are compiled into map-reduce jobs

35

Compilation

 Efficiency with Nested Bags

 In many cases, the nested bags created in each tuple of a COGROUP

statement never need to physically materialize

 Generally perform aggregation after a COGROUP and the

statements for said aggregation are pushed into the reduce function

 Applies to algebraic functions (ie: COUNT, MAX, MIN, SUM, AVG)

36

Compilation

 Efficiency with Nested Bags

37

Load(user.dat)

Filter

Group

Foreach

Map

Compilation

 Efficiency with Nested Bags

38

Load(user.dat)

Filter

Group

Foreach

Combine

Compilation

 Efficiency with Nested Bags

39

Load(user.dat)

Filter

Group

Foreach
Reduce

Compilation

 Efficiency with Nested Bags

 Why this works:

 COUNT is an algebraic function; it can be structured as a tree of sub-

functions with each leaf working on a subset of the data

40

SUM

COUNTCOUNTCombine

Reduce

Compilation

 Efficiency with Nested Bags

 Pig provides an interface for writing algebraic UDFs so they can take
advantage of this optimization as well.

 Inefficiencies

 Non-algebraic aggregate functions (ie: MEDIAN) need entire bag to
materialize; may cause a very large bag to spill to disk if it doesn‟t fit
in memory

 Every map-reduce job requires data be written and replicated to the
HDFS (although this is offset by parallelism achieved)

41

Debugging

 Pig-Pen

42

Debugging

 Pig-Latin command window and command generator

43

Debugging

 Sand Box Dataset (generated automatically!)

44

Debugging

 Pig-Pen

 Provides sample data that is:

 Real – taken from actual data

 Concise – as small as possible

 Complete – collectively illustrate the key semantics of each command

 Helps with schema definition

 Facilitates incremental program writing

45

Pig version 0.5.0

 More support for JOINs (outer, left, right)

 Ability to stream data through an external program

 Generally faster performance

 Ability to add types to schemas (ie: int, boolean, etc.)

 Open project so development is ongoing…

46

Conclusion

 Pig is a data processing environment in Hadoop that is

specifically targeted towards procedural programmers

who perform large-scale data analysis.

 Pig-Latin offers high-level data manipulation in a

procedural style.

 Pig-Pen is a debugging environment for Pig-Latin

commands that generates samples from real data.

47

More Info

 Pig, http://hadoop.apache.org/pig/

 Hadoop, http://hadoop.apache.org

48

Anks-

Thay!

http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/
http://hadoop.apache.org/

