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Motivation

» You're a procedural programmer

» You have some data

» You want to analyze it



Motivation

» As a procedural programmer-...

May find writing queries in SQL unnatural and too restrictive

More comfortable with writing code; a series of statements as
opposed to a long query.



Motivation

» The Data

Could be from multiple sources and in different formats
Data sets are typically huge
Don’t need to alter the original data; just need to do reads

May be very temporary; could discard the data set after
analysis



Motivation

» Data analysis goals

Quick
Exploit parallel processing power of a distributed system
Easy

Be able to write a program or query without a huge learning curve

Have some common analysis tasks predefined
Flexible

Transform a data set(s) into a workable structure without much
overhead

Perform customized processing
Transparent

Have a say in how the data processing is executed on the system



Motivation

» Relational Distributed Databases
Parallel database products expensive
Rigid schemas
Data has to be imported into system-managed tables

Processing requires declarative SQL query construction

» Map-Reduce
Relies on custom code for even common operations

Need to do workarounds for tasks that have different data
flows other than the expected Map—> Combine—>Reduce



Motivation

» Relational Distributed Databases

» Sweet Spot: Take the best of both SQL and Map-Reduce;
combine high-level declarative querying with low-level
procedural programming...Pig Latin!

» Map-Reduce



Outline

» System Overview
» Pig Latin (The Language)
Data Structures

Commands

» Pig (The Compiler)
Logical & Physical Plans

Optimization
Efficiency
» Pig Pen (The Debugger)

» Conclusion



Big Picture

*Avro

*Chukwa

*Hbase (Bigtable)
*HDFS (GFS)

*Hive

*Map-Reduce

*Pig

*Zookeeper (Chubby)
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Big Picture

Pig Latin
Script

User-
Defined
Functions

[ Compile J
>

Map-Reduce J
Statements

[ Optimize J
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Data Model

» Atom — simple atomic value (ie: number or string)
» Tuple

» Bag

» Map

('lakers' 1)
[-ahce-,x_ ets. 1)

[ages zo]]




Data Model

» Atom

» Tuple — sequence of fields; each field any type
» Bag

» Map

('lakers! 1)
(1Pod, 2)

'alice’ < . ['age'— 20]




Data Model

» Atom
» Tuple

» Bag — collection of tuples
Duplicates possible

Tuples in a bag can have different field lengths and field types
» Map

('lakers! 1)

‘alice’ <~
(1Pod, 2)

. ['age'— 20]




Data Model

» Atom
» Tuple
» Bag

» Map — collection of key-value pairs

Key is an atom; value can be any type

('lakers! 1)

‘alice’ <~
(1Pod, 2)

. ['age'— 20]




Data Model

» Use of data structures

Increased flexibility in data representation

» Fully nested

More natural for procedural programmers (target user) than
normalization

Data is often stored on disk in a nested fashion

Facilitates ease of writing user-defined functions

» No schema required



Data Model

» User-Defined Functions (UDFs)

Can be used in many Pig Latin statements
Useful for custom processing tasks
Can use non-atomic values for input and output

Currently must be written in Java



Speaking Pig Latin
» LOAD

Input is assumed to be a bag (sequence of tuples)
Can specify a serializer with ‘USING’
Can provide a schema with ‘AS’

newBag = LOAD ‘filename'
<USING functionName ()>
<AS (fieldNamel, fieldNameZ,..)>;



Speaking Pig Latin
» FOREACH

Apply some processing to each tuple in a bag

Each field can be:
A fieldname of the bag

A constant
A simple expression (ie: fl +2)
A predefined function (ie: SUM,AVG, COUNT, FLATTEN)
A UDF (ie: sumTaxes(gst, pst) )
newBag =
FOREACH bagName
GENERATE fieldl, field2, ..;



Speaking Pig Latin
» FILTER

Select a subset of the tuples in a bag
newBag = FILTER bagName
BY expression;

Expression uses simple comparison operators (==,!1=,<,>,...)
and Logical connectors (AND, NOT, OR)
some apples =
FILTER apples BY colour != ‘red’;

Can use UDFs
some apples =
FILTER apples BY NOT 1sRed(colour);



Speaking Pig Latin
» COGROUP

Group two datasets together by a common attribute
Groups data into nested bags

grouped data = COGROUP results BY queryString,
revenue BY queryString;

grouped_data: (group, results, revenue)
results:

(queryString, url, rank) (lakers, nba.com, 1) (lakers, top, 50)
lakers,
(lakers, espn.com, 2) (lakers, side, 20)
(lakers, nba.com, 1) = COGROUP

(lakers, espn.com, 2)

. - »
(kings, nhl.com, 1) (ki

. . ings, nhl.com, 1) (kings, top, 30)
Ckings, nba.com, 23 (: kings, < (kings. nba.com. 2) (kings, side, 10)

revenue: distributeRevenue
(queryString, adSlot, amount)

(lakers, nba.com, 1, top , 50)

(lakers, top, 50) — (lakers, nba.com, 1, side, 20) (nba.com, 60)
(lakers, side, 20) (lakers, espn.com, 2, top, 50) (espn.com, 1@)

(kings, top, 30) JOIN (lakers, espn.com, 2, side, 20) (nhl.com, 35)
(kings, side, 1@) L (nba.com, 5)
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Speaking Pig Latin
» Why COGROUP and not JOIN!?

url revenues =
FOREACH grouped data GENERATE
FLATTEN (distributeRev (results, revenue)):;

grouped_data: (group, results, revenue)
results: - -

(queryString, url, rank) elere (lakers, nba.com, 1) L (lakers, top, 5@) )
7 (Lak : 2) (C» 3 (lak ide, 2
(lakers, nba.com, 1)  COGROUP (lakers, espn.com, 2) (lakers, side, 2@)

(lakers, espn.com, 2) .
ki hl.com, 1) — & ” : h :
Eﬁ:g:: Eba.iﬁﬁ, zg ¢ kings {(kmgs, nhl.com, 1) (kings, top, 3@)})

- S

(kings, nba.com, 2) (** (kings, side, 1@)

- S

.revenue: (nba. com, 60) distributeRevenue
(queryString, adSlot, amount) ({ {Espn_mm: 10) }) |
(lakers, top, 50) —— ({ (nhl.com, 35)}) (nba.com, 6@)
(lakers, side, 20) (nba.com, 5) (espn.com, 10)
(kings, top, 30) — (nhl.com, 35)
(kings, side, 10) FLATTEN (nba.com, 5)
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Speaking Pig Latin
» Why COGROUP and not JOIN!?

May want to process nested bags of tuples before taking the
cross product.

Keeps to the goal of a single high-level data transformation per
pig-latin statement.

However, JOIN keyword is still available:

JOIN results BY queryString,
revenue BY queryString;

1 Equivalent

temp = COGROUP results BY queryString,
revenue BY queryString;
jolin result = FOREACH temp GENERATE
FLATTEN (results), FLATTEN (revenue) ;
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Speaking Pig Latin
» STORE (& DUMP)

Output data to a file (or screen)

STORE bagName INTO ‘filename'’
<USING deserializer()>;

» Other Commands (incomplete)
UNION — return the union of two or more bags
CROSS — take the cross product of two or more bags
ORDER — order tuples by a specified field(s)
DISTINCT — eliminate duplicate tuples in a bag
LIMIT — Limit results to a subset
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Compilation

» Pig system does two tasks:

Builds a Logical Plan from a Pig Latin script
Supports execution platform independence

No processing of data performed at this stage

Compiles the Logical Plan to a Physical Plan and Executes

Convert the Logical Plan into a series of Map-Reduce statements to
be executed (in this case) by Hadoop Map-Reduce
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Compilation

» Building a Logical Plan
Verify input files and bags referred to are valid

Create a logical plan for each bag defined
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Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;
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Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;
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Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (&) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

Foreach




Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

Foreach




Compilation

» Building a Logical Plan Example

r==—===71

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)
B = GROUP A BY city;
C = FOREACH B GENERATE group AS city,
COUNT (A) ;
D = FILTER C BY city IS ‘kitchener’ -

OR city IS ‘waterloo’;
STORE D INTO ‘local user count.dat’;

- Foreach




Compilation

» Other Optimization Techniques

31

Push Down Explodes — Perform FLATTEN operations after JOIN
where possible.

Push Limits Up — Perform LIMIT operations as soon as possible to
avoid unnecessary processing of intermediate data.

And a few others having to do with splitting output, avoiding reloading
data sets, and type-casting.

Also a “cookbook’ available online for tips and tricks on how to
structure Pig Latin commands for better performance.



Compilation

» Building a Physical Plan

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

AN

Only happens when output is
specified by STORE or DUMP

Foreach




Compilation

» Building a Physical Plan

» Step |:Create a map-reduce job for each Load(user.dat)
COGROUP

Group

Foreach




Compilation

» Building a Physical Plan

» Step |:Create a map-reduce job for each Load(user.dat)
COGROUP |

» Step 2: Push other commands into the :
map and reduce functions where Map
possible :

» May be the case certain commands
require their own map-reduce
job (ie: ORDER needs two map-
reduce jobs)

Group

Reduce

Foreach




Compilation

» Efficiency in Execution

Parallelism

Loading data - Files are loaded from HDFS

Statements are compiled into map-reduce jobs
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Compilation

Efficiency with Nested Bags

In many cases, the nested bags created in each tuple of a COGROUP
statement never need to physically materialize

Generally perform aggregation after a COGROUP and the
statements for said aggregation are pushed into the reduce function

Applies to algebraic functions (ie: COUNT, MAX, MIN, SUM,AVG)

36



Compilation

Efficiency with Nested Bags

Load(user.dat)

'waterloo', (' Alice', 21, 'waterloo')
'kitchener', (' Charles', 36, 'kitchener')

\Map

'waterloo', ('Bob', 18, 'waterloo')
'watcerloo', ('Pete', 39, 'waterloo')

Foreach
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Compilation

» Efficiency with Nested Bags

Load(user.dat)

{ waterloo', 1

'kitchener’ ,J \ -
Combine é
'waterloo' 2] /

Foreach




Compilation

» Efficiency with Nested Bags

Load(user.dat)

Reduce Foreach

{('waterloo' , 3)}

("kitchener', 1)




Compilation

Efficiency with Nested Bags

Why this works:

1 COUNT is an algebraic function; it can be structured as a tree of sub-
functions with each leaf working on a subset of the data

Reduce

Combine
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Compilation

Efficiency with Nested Bags

Pig provides an interface for writing algebraic UDFs so they can take
advantage of this optimization as well.

Inefficiencies

Non-algebraic aggregate functions (ie: MEDIAN) need entire bag to
materialize; may cause a very large bag to spill to disk if it doesn’t fit
in memory

Every map-reduce job requires data be written and replicated to the
HDFS (although this is offset by parallelism achieved)
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Debugging
» Pig-Pen

Operators

{ LOAD | GROUP | COGROUP | FILTER | FOREACH || ORDER

| = LOAD | USING | Default  ~| AS (| )
Generate Query

visits = LOAD 'visits.txt' AS (user, url, time);

pages = LOAD 'pages.txt' AS (url, pagerank);

v_p = JOIN visits BY url, pages BY wurl;

users = GROUP v_p BY user;

useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > '0.5;

visits:

pages:

v_p:

users:

useravg:

answer:

(Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)

(cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

(Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),

(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
(Amy, 0.8)
(Fred, 0.3)

(Amy, 0.8)
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Debugging

» Pig-Latin command window and command generator

— Operators
LOAD | GROUP || COGROUP || FILTER | FOREACH || ORDER
| = LOAD USING | Default ~| As (| )
wery

visits = LOAD 'visits.txt' AS (user, url, time);

pages = LOAD 'pages.txt' AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > '0.5;

visits:

pages:

v_p:

users:

useravg:

answer:

(Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)

(cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

(Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),

(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
(Amy, 0.8)
(Fred, 0.3)

(Amy, 0.8)
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Debugging

» Sand Box Dataset (generated automatically!)

Operators
|7 LOAD GROUP || COGROUP H FILTER || FOREACH ORDER
| = LOAD | USING | Default  ~| AS (| )
Generate Query
visits = LOAD 'visits.txt' AS (user, url, time); visits:  (Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)
pages = LOAD 'pages.txt' AS (url, pagerank); pages: (cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)
v_p = JOIN visits BY url, pages BY wurl; v_p: (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)
users = GROUP v_p BY user; users:  (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),
(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr; useravg: (Amy, 0.8)
(Fred. 0.3)
answer = FILTER useravg BY avgpr > '0.5; answer:  (Amy, 0.8)
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Debugging
» Pig-Pen

Provides sample data that is:
Real — taken from actual data
Concise — as small as possible

Complete — collectively illustrate the key semantics of each command
Helps with schema definition

Facilitates incremental program writing
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Pig version 0.5.0

» More support for JOINs (outer, left, right)

» Ability to stream data through an external program
» Generally faster performance

» Ability to add types to schemas (ie: int, boolean, etc.)

» Open project so development is ongoing...
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Conclusion

» Pig is a data processing environment in Hadoop that is
specifically targeted towards procedural programmers
who perform large-scale data analysis.

» Pig-Latin offers high-level data manipulation in a
procedural style.

» Pig-Pen is a debugging environment for Pig-Latin
commands that generates samples from real data.
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More Info

» Pig,

» Hadoop,
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http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/
http://hadoop.apache.org/

