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Motivation
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 You‟re a procedural programmer

 You have some data

 You want to analyze it



Motivation
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 As a procedural programmer…

 May find writing queries in SQL unnatural and too restrictive

 More comfortable with writing code;  a series of statements as 

opposed to a long query.



Motivation
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 The Data

 Could be from multiple sources and in different formats

 Data sets are typically huge

 Don‟t need to alter the original data;  just need to do reads

 May be very temporary;  could discard the data set after 

analysis



Motivation
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 Data analysis goals

 Quick

 Exploit parallel processing power of a distributed system

 Easy

 Be able to write a program or query without a huge learning curve

 Have some common analysis tasks predefined 

 Flexible

 Transform a data set(s) into a workable structure without much 

overhead

 Perform customized processing 

 Transparent

 Have a say in how the data processing is executed on the system



Motivation
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 Relational Distributed Databases

 Parallel database products expensive

 Rigid schemas

 Data has to be imported into system-managed tables

 Processing requires declarative SQL query construction

 Map-Reduce

 Relies on custom code for even common operations

 Need to do workarounds for tasks that have different data 

flows other than the expected MapCombineReduce



Motivation
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 Relational Distributed Databases

 Sweet Spot:  Take the best of both SQL and Map-Reduce; 
combine high-level declarative querying with low-level 
procedural programming…Pig Latin!

 Map-Reduce



Outline

 System Overview

 Pig Latin (The Language)

 Data Structures

 Commands

 Pig (The Compiler)

 Logical & Physical Plans

 Optimization

 Efficiency

 Pig Pen (The Debugger)

 Conclusion
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Big Picture
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•Avro

•Chukwa

•Hbase (Bigtable)

•HDFS (GFS)

•Hive

•Map-Reduce

•Pig

•Zookeeper (Chubby)



Big Picture
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Map-Reduce

Statements
Map-Reduce

Statements
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Statements

Pig Latin
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User-

Defined 

Functions

Write Results Read Data



Data Model

 Atom – simple atomic value (ie: number or string)

 Tuple

 Bag

 Map

11



Data Model

 Atom

 Tuple – sequence of fields; each field any type

 Bag

 Map
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Data Model

 Atom

 Tuple

 Bag – collection of tuples

 Duplicates possible

 Tuples in a bag can have different field lengths and field types

 Map
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Data Model

 Atom

 Tuple

 Bag

 Map – collection of key-value pairs

 Key is an atom;  value can be any type
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Data Model

 Use of data structures

 Increased flexibility in data representation

 Fully nested

 More natural for procedural programmers (target user) than 

normalization

 Data is often stored on disk in a nested fashion

 Facilitates ease of writing user-defined functions

 No schema required
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Data Model

 User-Defined Functions (UDFs)

 Can be used in many Pig Latin statements

 Useful for custom processing tasks

 Can use non-atomic values for input and output

 Currently must be written in Java
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Speaking Pig Latin

 LOAD

 Input is assumed to be a bag (sequence of tuples)

 Can specify a serializer with „USING‟

 Can provide a schema with „AS‟
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newBag = LOAD ‘filename’

<USING functionName()>

<AS (fieldName1, fieldName2,…)>;



Speaking Pig Latin

 FOREACH

 Apply some processing to each tuple in a bag

 Each field can be:

 A fieldname of the bag

 A constant

 A simple expression (ie: f1+f2)

 A predefined function (ie: SUM, AVG, COUNT, FLATTEN)

 A UDF (ie: sumTaxes(gst, pst) )
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newBag = 

FOREACH bagName

GENERATE field1, field2, …;



Speaking Pig Latin

 FILTER

 Select a subset of the tuples in a bag

 Expression uses simple comparison operators (==, !=, <, >, …) 

and Logical connectors (AND, NOT, OR)

 Can use UDFs
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newBag = FILTER bagName

BY expression;

some_apples = 

FILTER apples BY colour != ‘red’;

some_apples = 

FILTER apples BY NOT isRed(colour);



Speaking Pig Latin

 COGROUP

 Group two datasets together by a common attribute

 Groups data into nested bags
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grouped_data = COGROUP results BY queryString,

revenue BY queryString;



Speaking Pig Latin

 Why COGROUP and not JOIN?
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url_revenues = 

FOREACH grouped_data GENERATE

FLATTEN(distributeRev(results, revenue));



Speaking Pig Latin

 Why COGROUP and not JOIN?

 May want to process nested bags of tuples before taking the 

cross product.

 Keeps to the goal of a single high-level data transformation per 

pig-latin statement.

 However, JOIN keyword is still available:
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JOIN results BY queryString,

revenue BY queryString;

temp = COGROUP results BY queryString, 

revenue BY queryString;

join_result = FOREACH temp GENERATE            

FLATTEN(results), FLATTEN(revenue);

Equivalent



Speaking Pig Latin

 STORE (& DUMP)

 Output data to a file (or screen)

 Other Commands (incomplete)

 UNION – return the union of two or more bags

 CROSS – take the cross product of two or more bags

 ORDER – order tuples by a specified field(s)

 DISTINCT – eliminate duplicate tuples in a bag

 LIMIT – Limit results to a subset
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STORE bagName INTO ‘filename’

<USING deserializer()>;



Compilation

 Pig system does two tasks:

 Builds a Logical Plan from a Pig Latin script

 Supports execution platform independence

 No processing of data performed at this stage 

 Compiles the Logical Plan to a Physical Plan and Executes

 Convert the Logical Plan into a series of Map-Reduce statements to 

be executed (in this case) by Hadoop Map-Reduce
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Compilation

 Building a Logical Plan

 Verify input files and bags referred to are valid

 Create a logical plan for each bag defined
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Compilation

 Building a Logical Plan Example

26

A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)



Compilation

 Building a Logical Plan Example
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A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group



Compilation

 Building a Logical Plan Example
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A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach



Compilation

 Building a Logical Plan Example
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A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Group

Foreach

Filter



Compilation

 Building a Logical Plan Example
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A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach



Compilation

 Other Optimization Techniques

 Push Down Explodes – Perform FLATTEN operations after JOIN 
where possible.

 Push Limits Up – Perform LIMIT operations as soon as possible to 
avoid unnecessary processing of intermediate data.

 And a few others having to do with splitting output, avoiding reloading 
data sets, and type-casting.

 Also a “cookbook” available online for tips and tricks on how to 
structure Pig Latin commands for better performance.
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Compilation

 Building a Physical Plan
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A = LOAD ‘user.dat’ AS (name, age, city);

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,   

COUNT(A);

D = FILTER C BY city IS ‘kitchener’

OR city IS ‘waterloo’;

STORE D INTO ‘local_user_count.dat’;

Load(user.dat)

Filter

Group

Foreach

Only happens when output is 

specified by STORE or DUMP



Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each 

COGROUP
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Load(user.dat)

Filter

Group

Foreach

Map

Reduce



Compilation

 Building a Physical Plan

 Step 1: Create a map-reduce job for each 

COGROUP

 Step 2: Push other commands into the

map and reduce functions where 

possible

 May be the case certain commands

require their own map-reduce

job (ie: ORDER needs two map-

reduce jobs)
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Load(user.dat)

Filter

Group

Foreach

Map

Reduce



Compilation

 Efficiency in Execution

 Parallelism

 Loading data - Files are loaded from HDFS

 Statements are compiled into map-reduce jobs
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Compilation

 Efficiency with Nested Bags

 In many cases, the nested bags created in each tuple of a COGROUP 

statement never need to physically materialize

 Generally perform aggregation after a COGROUP and the 

statements for said aggregation are pushed into the reduce function

 Applies to algebraic functions (ie: COUNT, MAX, MIN, SUM, AVG)

36



Compilation

 Efficiency with Nested Bags
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Load(user.dat)

Filter

Group

Foreach

Map



Compilation

 Efficiency with Nested Bags
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Load(user.dat)

Filter

Group

Foreach

Combine



Compilation

 Efficiency with Nested Bags
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Load(user.dat)

Filter

Group

Foreach
Reduce



Compilation

 Efficiency with Nested Bags

 Why this works:

 COUNT is an algebraic function; it can be structured as a tree of sub-

functions with each leaf working on a subset of the data
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SUM

COUNTCOUNTCombine

Reduce



Compilation

 Efficiency with Nested Bags

 Pig provides an interface for writing algebraic UDFs so they can take 
advantage of this optimization as well.

 Inefficiencies

 Non-algebraic aggregate functions (ie: MEDIAN) need entire bag to 
materialize; may cause a very large bag to spill to disk if it doesn‟t fit 
in memory

 Every map-reduce job requires data be written and replicated to the 
HDFS (although this is offset by parallelism achieved)
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Debugging

 Pig-Pen
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Debugging

 Pig-Latin command window and command generator
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Debugging

 Sand Box Dataset (generated automatically!)
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Debugging

 Pig-Pen

 Provides sample data that is:

 Real – taken from actual data

 Concise – as small as possible

 Complete – collectively illustrate the key semantics of each command

 Helps with schema definition

 Facilitates incremental program writing
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Pig version 0.5.0

 More support for JOINs (outer, left, right)

 Ability to stream data through an external program

 Generally faster performance

 Ability to add types to schemas (ie: int, boolean, etc.)

 Open project so development is ongoing…
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Conclusion

 Pig is a data processing environment in Hadoop that is 

specifically targeted towards procedural programmers 

who perform large-scale data analysis. 

 Pig-Latin offers high-level data manipulation in a 

procedural style.

 Pig-Pen is a debugging environment for Pig-Latin 

commands that generates samples from real data. 
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More Info

 Pig,  http://hadoop.apache.org/pig/

 Hadoop, http://hadoop.apache.org
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Anks-

Thay!

http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/
http://hadoop.apache.org/

