Pig Latin: A Not-So-Foreign
Language for Data Processing

Christopher Olsten, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, Andrew Tomkins

Presented by Dan Welch

Motivation

» You're a procedural programmer

» You have some data

» You want to analyze it

Motivation

» As a procedural programmer-...

May find writing queries in SQL unnatural and too restrictive

More comfortable with writing code; a series of statements as
opposed to a long query.

Motivation

» The Data

Could be from multiple sources and in different formats
Data sets are typically huge
Don’t need to alter the original data; just need to do reads

May be very temporary; could discard the data set after
analysis

Motivation

» Data analysis goals

Quick
Exploit parallel processing power of a distributed system
Easy

Be able to write a program or query without a huge learning curve

Have some common analysis tasks predefined
Flexible

Transform a data set(s) into a workable structure without much
overhead

Perform customized processing
Transparent

Have a say in how the data processing is executed on the system

Motivation

» Relational Distributed Databases
Parallel database products expensive
Rigid schemas
Data has to be imported into system-managed tables

Processing requires declarative SQL query construction

» Map-Reduce
Relies on custom code for even common operations

Need to do workarounds for tasks that have different data
flows other than the expected Map—> Combine—>Reduce

Motivation

» Relational Distributed Databases

» Sweet Spot: Take the best of both SQL and Map-Reduce;
combine high-level declarative querying with low-level
procedural programming...Pig Latin!

» Map-Reduce

Outline

» System Overview
» Pig Latin (The Language)
Data Structures

Commands

» Pig (The Compiler)
Logical & Physical Plans

Optimization
Efficiency
» Pig Pen (The Debugger)

» Conclusion

Big Picture

*Avro

*Chukwa

*Hbase (Bigtable)
*HDFS (GFS)

*Hive

*Map-Reduce

*Pig

*Zookeeper (Chubby)

——

T e e e e e e e e e e e e e e e o o =

Big Picture

Pig Latin
Script

User-
Defined
Functions

[Compile J
>

Map-Reduce J
Statements

[Optimize J

__

T o o e e o o e e e e e e e e o e = =

Data Model

» Atom — simple atomic value (ie: number or string)
» Tuple

» Bag

» Map

('lakers' 1)
[-ahce-,x_ ets. 1)

[ages zo]]

Data Model

» Atom

» Tuple — sequence of fields; each field any type
» Bag

» Map

('lakers! 1)
(1Pod, 2)

'alice’ < . ['age'— 20]

Data Model

» Atom
» Tuple

» Bag — collection of tuples
Duplicates possible

Tuples in a bag can have different field lengths and field types
» Map

('lakers! 1)

‘alice’ <~
(1Pod, 2)

. ['age'— 20]

Data Model

» Atom
» Tuple
» Bag

» Map — collection of key-value pairs

Key is an atom; value can be any type

('lakers! 1)

‘alice’ <~
(1Pod, 2)

. ['age'— 20]

Data Model

» Use of data structures

Increased flexibility in data representation

» Fully nested

More natural for procedural programmers (target user) than
normalization

Data is often stored on disk in a nested fashion

Facilitates ease of writing user-defined functions

» No schema required

Data Model

» User-Defined Functions (UDFs)

Can be used in many Pig Latin statements
Useful for custom processing tasks
Can use non-atomic values for input and output

Currently must be written in Java

Speaking Pig Latin
» LOAD

Input is assumed to be a bag (sequence of tuples)
Can specify a serializer with ‘USING’
Can provide a schema with ‘AS’

newBag = LOAD ‘filename'
<USING functionName ()>
<AS (fieldNamel, fieldNameZ,..)>;

Speaking Pig Latin
» FOREACH

Apply some processing to each tuple in a bag

Each field can be:
A fieldname of the bag

A constant
A simple expression (ie: fl +2)
A predefined function (ie: SUM,AVG, COUNT, FLATTEN)
A UDF (ie: sumTaxes(gst, pst))
newBag =
FOREACH bagName
GENERATE fieldl, field2, ..;

Speaking Pig Latin
» FILTER

Select a subset of the tuples in a bag
newBag = FILTER bagName
BY expression;

Expression uses simple comparison operators (==,!1=,<,>,...)
and Logical connectors (AND, NOT, OR)
some apples =
FILTER apples BY colour != ‘red’;

Can use UDFs
some apples =
FILTER apples BY NOT 1sRed(colour);

Speaking Pig Latin
» COGROUP

Group two datasets together by a common attribute
Groups data into nested bags

grouped data = COGROUP results BY queryString,
revenue BY queryString;

grouped_data: (group, results, revenue)
results:

(queryString, url, rank) (lakers, nba.com, 1) (lakers, top, 50)
lakers,
(lakers, espn.com, 2) (lakers, side, 20)
(lakers, nba.com, 1) = COGROUP

(lakers, espn.com, 2)

. - »
(kings, nhl.com, 1) (ki

. . ings, nhl.com, 1) (kings, top, 30)
Ckings, nba.com, 23 (: kings, < (kings. nba.com. 2) (kings, side, 10)

revenue: distributeRevenue
(queryString, adSlot, amount)

(lakers, nba.com, 1, top , 50)

(lakers, top, 50) — (lakers, nba.com, 1, side, 20) (nba.com, 60)
(lakers, side, 20) (lakers, espn.com, 2, top, 50) (espn.com, 1@)

(kings, top, 30) JOIN (lakers, espn.com, 2, side, 20) (nhl.com, 35)
(kings, side, 1@) L (nba.com, 5)

20

Speaking Pig Latin
» Why COGROUP and not JOIN!?

url revenues =
FOREACH grouped data GENERATE
FLATTEN (distributeRev (results, revenue)):;

grouped_data: (group, results, revenue)
results: - -

(queryString, url, rank) elere (lakers, nba.com, 1) L (lakers, top, 5@))
7 (Lak : 2) (C» 3 (lak ide, 2
(lakers, nba.com, 1) COGROUP (lakers, espn.com, 2) (lakers, side, 2@)

(lakers, espn.com, 2) .
ki hl.com, 1) — & ” : h :
Eﬁ:g:: Eba.iﬁﬁ, zg ¢ kings {(kmgs, nhl.com, 1) (kings, top, 3@)})

- S

(kings, nba.com, 2) (** (kings, side, 1@)

- S

.revenue: (nba. com, 60) distributeRevenue
(queryString, adSlot, amount) ({ {Espn_mm: 10) }) |
(lakers, top, 50) —— ({ (nhl.com, 35)}) (nba.com, 6@)
(lakers, side, 20) (nba.com, 5) (espn.com, 10)
(kings, top, 30) — (nhl.com, 35)
(kings, side, 10) FLATTEN (nba.com, 5)

21

Speaking Pig Latin
» Why COGROUP and not JOIN!?

May want to process nested bags of tuples before taking the
cross product.

Keeps to the goal of a single high-level data transformation per
pig-latin statement.

However, JOIN keyword is still available:

JOIN results BY queryString,
revenue BY queryString;

1 Equivalent

temp = COGROUP results BY queryString,
revenue BY queryString;
jolin result = FOREACH temp GENERATE
FLATTEN (results), FLATTEN (revenue) ;

22

Speaking Pig Latin
» STORE (& DUMP)

Output data to a file (or screen)

STORE bagName INTO ‘filename'’
<USING deserializer()>;

» Other Commands (incomplete)
UNION — return the union of two or more bags
CROSS — take the cross product of two or more bags
ORDER — order tuples by a specified field(s)
DISTINCT — eliminate duplicate tuples in a bag
LIMIT — Limit results to a subset

23

Compilation

» Pig system does two tasks:

Builds a Logical Plan from a Pig Latin script
Supports execution platform independence

No processing of data performed at this stage

Compiles the Logical Plan to a Physical Plan and Executes

Convert the Logical Plan into a series of Map-Reduce statements to
be executed (in this case) by Hadoop Map-Reduce

24

Compilation

» Building a Logical Plan
Verify input files and bags referred to are valid

Create a logical plan for each bag defined

25

Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

26

Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

27

Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (&) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

Foreach

Compilation

» Building a Logical Plan Example

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

Foreach

Compilation

» Building a Logical Plan Example

r==—===71

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)
B = GROUP A BY city;
C = FOREACH B GENERATE group AS city,
COUNT (A) ;
D = FILTER C BY city IS ‘kitchener’ -

OR city IS ‘waterloo’;
STORE D INTO ‘local user count.dat’;

- Foreach

Compilation

» Other Optimization Techniques

31

Push Down Explodes — Perform FLATTEN operations after JOIN
where possible.

Push Limits Up — Perform LIMIT operations as soon as possible to
avoid unnecessary processing of intermediate data.

And a few others having to do with splitting output, avoiding reloading
data sets, and type-casting.

Also a “cookbook’ available online for tips and tricks on how to
structure Pig Latin commands for better performance.

Compilation

» Building a Physical Plan

A = LOAD ‘user.dat’ AS (name, age, city); Load(user.dat)

B = GROUP A BY city;

C = FOREACH B GENERATE group AS city,
COUNT (A7) ;

D = FILTER C BY city IS ‘kitchener’
OR city IS ‘waterloo’;

STORE D INTO ‘local user count.dat’;

AN

Only happens when output is
specified by STORE or DUMP

Foreach

Compilation

» Building a Physical Plan

» Step |:Create a map-reduce job for each Load(user.dat)
COGROUP

Group

Foreach

Compilation

» Building a Physical Plan

» Step |:Create a map-reduce job for each Load(user.dat)
COGROUP |

» Step 2: Push other commands into the :
map and reduce functions where Map
possible :

» May be the case certain commands
require their own map-reduce
job (ie: ORDER needs two map-
reduce jobs)

Group

Reduce

Foreach

Compilation

» Efficiency in Execution

Parallelism

Loading data - Files are loaded from HDFS

Statements are compiled into map-reduce jobs

35

Compilation

Efficiency with Nested Bags

In many cases, the nested bags created in each tuple of a COGROUP
statement never need to physically materialize

Generally perform aggregation after a COGROUP and the
statements for said aggregation are pushed into the reduce function

Applies to algebraic functions (ie: COUNT, MAX, MIN, SUM,AVG)

36

Compilation

Efficiency with Nested Bags

Load(user.dat)

'waterloo', (' Alice', 21, 'waterloo')
'kitchener', (' Charles', 36, 'kitchener')

\Map

'waterloo', ('Bob', 18, 'waterloo')
'watcerloo', ('Pete', 39, 'waterloo')

Foreach

37

Compilation

» Efficiency with Nested Bags

Load(user.dat)

{ waterloo', 1

'kitchener’ ,J \ -
Combine é
'waterloo' 2] /

Foreach

Compilation

» Efficiency with Nested Bags

Load(user.dat)

Reduce Foreach

{('waterloo' , 3)}

("kitchener', 1)

Compilation

Efficiency with Nested Bags

Why this works:

1 COUNT is an algebraic function; it can be structured as a tree of sub-
functions with each leaf working on a subset of the data

Reduce

Combine

40

Compilation

Efficiency with Nested Bags

Pig provides an interface for writing algebraic UDFs so they can take
advantage of this optimization as well.

Inefficiencies

Non-algebraic aggregate functions (ie: MEDIAN) need entire bag to
materialize; may cause a very large bag to spill to disk if it doesn’t fit
in memory

Every map-reduce job requires data be written and replicated to the
HDFS (although this is offset by parallelism achieved)

41

Debugging
» Pig-Pen

Operators

{ LOAD | GROUP | COGROUP | FILTER | FOREACH || ORDER

| = LOAD | USING | Default ~| AS (|)
Generate Query

visits = LOAD 'visits.txt' AS (user, url, time);

pages = LOAD 'pages.txt' AS (url, pagerank);

v_p = JOIN visits BY url, pages BY wurl;

users = GROUP v_p BY user;

useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > '0.5;

visits:

pages:

v_p:

users:

useravg:

answer:

(Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)

(cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

(Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),

(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
(Amy, 0.8)
(Fred, 0.3)

(Amy, 0.8)

42

Debugging

» Pig-Latin command window and command generator

— Operators
LOAD | GROUP || COGROUP || FILTER | FOREACH || ORDER
| = LOAD USING | Default ~| As (|)
wery

visits = LOAD 'visits.txt' AS (user, url, time);

pages = LOAD 'pages.txt' AS (url, pagerank);

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > '0.5;

visits:

pages:

v_p:

users:

useravg:

answer:

(Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)

(cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

(Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),

(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
(Amy, 0.8)
(Fred, 0.3)

(Amy, 0.8)

43

Debugging

» Sand Box Dataset (generated automatically!)

Operators
|7 LOAD GROUP || COGROUP H FILTER || FOREACH ORDER
| = LOAD | USING | Default ~| AS (|)
Generate Query
visits = LOAD 'visits.txt' AS (user, url, time); visits: (Amy, cnn.com, 8am)
(Amy, frogs.com, 9am})
(Fred, snails.com, 11am)
pages = LOAD 'pages.txt' AS (url, pagerank); pages: (cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)
v_p = JOIN visits BY url, pages BY wurl; v_p: (Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)
users = GROUP v_p BY user; users: (Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),
(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr; useravg: (Amy, 0.8)
(Fred. 0.3)
answer = FILTER useravg BY avgpr > '0.5; answer: (Amy, 0.8)

44

Debugging
» Pig-Pen

Provides sample data that is:
Real — taken from actual data
Concise — as small as possible

Complete — collectively illustrate the key semantics of each command
Helps with schema definition

Facilitates incremental program writing

45

Pig version 0.5.0

» More support for JOINs (outer, left, right)

» Ability to stream data through an external program
» Generally faster performance

» Ability to add types to schemas (ie: int, boolean, etc.)

» Open project so development is ongoing...

46

Conclusion

» Pig is a data processing environment in Hadoop that is
specifically targeted towards procedural programmers
who perform large-scale data analysis.

» Pig-Latin offers high-level data manipulation in a
procedural style.

» Pig-Pen is a debugging environment for Pig-Latin
commands that generates samples from real data.

47

More Info

» Pig,

» Hadoop,

48

http://hadoop.apache.org/pig/
http://hadoop.apache.org/pig/
http://hadoop.apache.org/
http://hadoop.apache.org/

