
CS848 Paper Presentation
Design and Evaluation of a Continuous

Consistency Model for Replicated Services

Yu, Vahdat
Duke University

Presented by Brian VanSchyndel

David R. Cheriton School of Computer Science
University of Waterloo

25 January 2010

 2

Scenario: Distributed database with multiple
replicas

● Multiple database servers connected by network
● Not partitioned

A
B
C

A
B
C

A
B
C

 3

Motivation

● Optimistic consistency models typically provide no bounds
on the inconsistency of the data

 4

Motivation

● Optimistic consistency models typically provide no bounds
on the inconsistency of the data

● Purpose of the paper:
● Investigate the continuum between strong and optimistic consistency

 5

Goal (1)

● Understand data consistency by using concrete examples:
● Airline Reservation System
● News System
● Load Balancing System

● Consistency: “Closeness” of data among replicas

 6

Operations:
● Query seat availability
● Reserve a random seat on the plane

Consistency: Airline Reservation System

 7

Consistency:
● Seat states { Reserved, Available }
● Seats have same state among replicas

Consistency: Airline Reservation System

 8

Consequences of inconsistency:
● Query returns incorrect locations of available seats
● Query returns incorrect number of available seats
● Reservation conflict, so:

– Automatically reserve a different seat
– Revoke reservation if no more seats available

Consistency: Airline Reservation System

 9

Operations:
● Post new message
● Post a reply

Consistency: News System

 10

Consistency:
● Messages appear on all replicas
● Replies appear after original message
● Message threads appear in the same order on all replicas

Consistency: News System

 11

Consequences of inconsistency:
● Confusion (messages of discussions are randomly ordered)
● Incomplete information (missing messages)

Consistency: News System

 12

Operations:
● Preferred client requires “service”
● Standard client requires “service”

Consistency:
● Perceived available server capacity same among replicas

Consistency: Load Balancing System

3 3 3 3 3 3 3 3 3 3

 13

Consequences of inconsistency:
● Server becomes overloaded when a client thinks the server is available
● Client waits for an idle server to become available when client thinks the

server is too busy

Consistency: Load Balancing System

3 3 3 3 3 3 3 3 3 3

 14

“Conit”

Definition: Unit of consistency
● The data that is bounded by the configured “level of consistency”
● Consistency of a conit is the “closeness” between the same conit on

different replicas.

 15

“Conit”

Definition: Unit of consistency
● The data that is bounded by the configured “level of consistency”
● Consistency of a conit is the “closeness” between the same conit on

different replicas.
● e.g. Flight Reservation System – all the seats on the plane
● e.g. News System – all messages in a newsgroup
● e.g. Load Balancing System – server capacity

 16

“Conit”

Definition: Unit of consistency
● The data that is bounded by the configured “level of consistency”
● Consistency of a conit is the “closeness” between the same conit on

different replicas.
● e.g. Flight Reservation System – all the seats on the plane
● e.g. News System – all messages in a newsgroup
● e.g. Load Balancing System – server capacity
● Conits should be big enough to keep the number of guarantees about

the level of consistency of the database manageable.
● Conits should be small enough so inconsistencies among unrelated data

does not affect another conit's performance.

 17

Goal (2)

● Quantify a level of data consistency for an individual conit
● 3 metrics:

● Numerical error bound
● Order error bound
● Staleness bound

 18

Metrics: Numerical Error

● Definition: Total “weight” (importance) of writes that the
replica has not seen
● e.g. 2 unseen writes with a weight of 200 is more important to propagate

versus 50 unseen writes with a weight of 5
● e.g. weight = priority of a newsgroup message
● e.g. weight = number of shared resources unconsumed by clients
● e.g. C

system
 = 5, C

replicaA
 = 2 → Numerical Error = 3

 19

Metrics: Numerical Error

● Definition: Total “weight” (importance) of writes that the
replica has not seen
● e.g. 2 unseen writes with a weight of 200 is more important to propagate

versus 50 unseen writes with a weight of 5
● e.g. weight = priority of a newsgroup message
● e.g. weight = number of shared resources unconsumed by clients
● e.g. C

system
 = 5, C

replicaA
 = 2 → Numerical Error = 3

● Absolute error: Difference between actual and perceived
weight

● Relative error: Difference between actual and perceived
weight as a percentage of actual weight

 20

Metrics: Numerical Error

● Higher bound on numerical error → Better performance
● Less frequent syncing between replicas

● Difficult to know the numerical error at any given time
● Need to know the perceived and actual weight of writes of other replicas
● Getting weights from other replicas requires data transfers which is what

we are trying to restrict

 21

Metrics: Order Error

● Definition: Total number of tentative writes
● Recall that tentative (un-committed) writes are subject to re-ordering

● Higher bound on order error → Better performance
● Less frequent syncing between replicas
● Less frequent re-ordering of tentative writes
● But more tentative writes need to be re-ordered each time

 22

Metrics: Staleness

● Definition: Real time required to “see” a write that
occurred on a remote replica

● Higher bound on staleness → Better performance
● Less frequent syncing between replicas

 23

Goal (3)

● Understand how to set the bounds on data consistency
metrics with respect to concrete examples
● Airline Reservation System

– Numerical Error
– Order Error
– Staleness

● News System
– Numerical Error
– Order Error
– Staleness

● Load Balancing System
– Numerical Error

 24

Bounds: Airline Reservation System

● Numerical Error
● Affects Reservation Conflict Rate because conflict rate is inversely

proportional to the number of unseen reservations
● Weight: Seat reservation = 1
● Formula derived for calculating Reservation Conflict Rate as a function

of the Numerical Error bound

 25

Bounds: Airline Reservation System

● Numerical Error
● Affects Reservation Conflict Rate because conflict rate is inversely

proportional to the number of unseen reservations
● Weight: Seat reservation = 1
● Formula derived for calculating Reservation Conflict Rate as a function

of the Numerical Error bound

● Order Error
● Affects query results because tentative writes (reservations) may change

due to conflicts

 26

Bounds: Airline Reservation System

● Staleness
● Affects query results because available seats may no longer be available

 27

Bounds: Airline Reservation System

● Staleness
● Affects query results because available seats may no longer be available

● Dynamic Factors
● Preferred vs. Standard clients may demand higher consistency
● Network capacity may be good enough to have high performance AND

high consistency
● Reservation Conflict Rate gets higher as seats are reserved

– Want strong consistency for issuing the last available seat to avoid revoking many
issued tickets

 28

Bounds: News System

● Numerical Error
● Affects number of unseen messages
● Weight: Each message = 1

● Order Error
● Affects order of messages (reply/original, multiple threads)

● Staleness
● Affects the delay that a message posted on another replica takes to

appear on your replica

 29

Bounds: News System

● Dynamic Factors
● Important messages require a higher numerical weight in order to force

their propagation sooner

 30

Bounds: Load Balancing System

● Numerical Error
● Affects accuracy of perceived current server capacity
● Weight: Each request = 1, Each return = -1

● Order Error
● Doesn't matter because summation of the counter is commutative

● Staleness
● Doesn't matter because there is no added benefit

 31

Bounds: Optimization

● What are the consequences of write conflicts?
● What are the consequences of incorrect reads?
● Acceptability depends on system requirements

– Loss of customers, reduced revenue, broken agreements and laws, etc.

● All factors have tradeoffs
● Use probabilistic formulas to identify good choices
● Test various combinations of consistency bounds and

compare resulting performance and consequences

 32

Goal (4)

● Understand the TACT (Tunable Availability and
Consistency Tradeoffs) implementation

 33

TACT

● Middleware layer between client application and replicated
data store

TACT

Client Client Client

TACT TACT

 34

TACT

● Replica synchronization doesn't happen without the
approval of TACT

● Synchronization uses anti-entropy exchanges

● Each replica-conit-request is configurable by its own
consistency bounds (Numerical Error, Order Error,
Staleness)
● Very fine configurability

 35

TACT

● When none of the consistency requirements are violated
the local data store is used (high performance)

● When a consistency requirement is violated (too
inconsistent) the client waits for local data store to sync
with other replicas so consistency requirements are met
(lower performance)

● Syncing also takes place at arbitrary “optimal” times
● Bounds of 0 → strong consistency
● Bounds of ∞ → optimistic consistency

 36

TACT

● Maintaining Numerical Error bound
● Estimate other replica's Numerical Error by estimating the total weight

we have kept secret from each replica
● Infer total weight of each replica based on patterns of the replica
● Requires consensus algorithm or approximation algorithm (overhead)
● Push local data to other replicas to ensure other replicas are aware of

our writes

 37

TACT

● Maintaining Order Error bound
● When our number of tentative writes reach the limit we pull data from

other replicas in order to commit our writes

● Maintaining Staleness bound
● When the current time – last update time reaches the limit of staleness

for a replica we pull data from the replica

 38

TACT Experiments

● Ran many operations from the examples
● Flight Reservation System, News System, Load Balancing System

● Used WAN communication to ensure syncing >> local re-
ordering and merging

● Measured latency of operations

 39

TACT Evaluation

● The rate of performance-increase with respect to
consistency-decrease depends on the application
● Workload; Read/write ratios; Probability of simultaneous writes; Network

latency, bandwidth, error rates; etc.

● All results were positive (bounded consistency → bounded
performance)

	Title
	Scenario
	Motivation
	Motivation (2)
	Consistency - Goal
	Consistency - Airline (1)
	Consistency - Airline (2)
	Consistency - Airline (3)
	Consistency - News (1)
	Consistency - News (2)
	Consistency - News (3)
	Consistency - Load (1)
	Consistency - Load (2)
	Conit (1)
	Conit (2)
	Conit (3)
	Metrics - Goal
	Metrics - Numerical (1)
	Metrics - Numerical (2)
	Metrics - Numerical (3)
	Metrics - Order
	Metrics - Staleness
	Bounds - Goal
	Bounds - Airline (1)
	Bounds - Airline (2)
	Bounds - Airline (3)
	Bounds - Airline (4)
	Bounds - News (1)
	Bounds - News (2)
	Bounds - Load
	Bounds - Optimization
	TACT - Goal
	TACT - Implementation (1)
	TACT - Implementation (2)
	TACT - Implementation (3)
	TACT - Implementation (4)
	TACT - Implementation (5)
	TACT - Experiments
	TACT - Evaluation

