
1

The Google File System

Written by
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung
presented at SOSP 2003

presented by
Thomas Reidemeister

2

Motivation for the Google File System

Google Search Engine Facts:
• Google attempts to index the entire Internet
• Analytical backend has to process huge amounts of

data for indexing and data mining

Implications:
• Need huge, distributed, available, and dependable

file system.
• Google's problems differ from traditional file system

design constraints (e.g. by workloads, by size of
files, …)

3

Outline

• Overview of Design Constraints and Decisions
• Centralized Architecture
• Operations: Consistency, Reading, Writing, Append,

Snapshot
• Master Operation
• Measures to Attain Fault Tolerance
• Evaluation: Micro Benchmark
• Conclusion

4

Design Constraints and Decisions

Constraints:
• Component failures are the

norm
• Support for huge files by

traditional file system
standards

• Support for large streaming
reads

• File append is dominant
operation

• Throughput is favored over
latency

• Custom file system API
• Use commodity hardware

Decisions:
• Use simple centralized

architecture
• Achieve dependability

through replication
• Files are large fixed-sized

chunks
• File content is not cached
• Extend familiar FS APIs with

special operations

Are these issues really novel?

5

Centralized Architecture

GFS uses a central master that maintains the meta data
and stores the data on replicated chunk servers.

*Image taken from: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, SOSP2003

6

Centralized Architecture: GFS Master

Master server maintains all meta data, including:
• Namespaces and operations thereon
• Access control information
• Chunk index: filename to chunk mapping
• Chunk replication and maintenance
All metadata is kept in memory
• c.a 64 bytes per 64MB chunk
• Fast access
Operations are logged to attain dependability
• Log is replicated

7

Centralized Architecture: Operation

GFS clients only communicate with master to obtain
metadata, read/writes are done at the chunk servers.

Writes and appends also referred to as mutations

8

Operations: Overview

Metadata operations are executed at the master.

File operations that involve chunk server are:
• Reading
• Writing
• Appending
• Snapshot

9

Operations: Consistency Overview

Guarantees for meta data:
• Namespace mutations are atomic
Data consistency model:
• “Consistent”: All clients see the same data
• “Defined”: All clients see what the mutation has

written (on a per-chunk basis)
• Risk of stale reads and interleaved chunk writes;

attempt to signal errors to client

*Image taken from: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, SOSP2003

10

Operations: Reading

1. Application invokes read (filename, offset)
2. Client library translates offset to chunk index and

sends it to master (filename, chunk index)
3. Master responds with handle (chunk, replica

locations)
4. Client library selects location and sends (handle,

offset) to it
5. Chunk server responds with requested data
6. Data is forwarded to application

11

Operations: Chunk Mutations

• Master elects primary for each chunk among
replicas

• Primary holds lease for at least 60s that is updated
through keep-alive requests

• Primary coordinates chunk mutations
• However:

– Client library sends all data to all replicas
– Client library retries failed mutations

12

Operations: Writing

1. Client sends write request
(filename, chunk index) to
master

2. Master responds with chunk
handle (chunk, replica
locations)

3. Client sends data to all
replicas; kept in memory

4. Client sends write to primary
5. Primary versions and performs

write and informs replicas
6. Secondary replicas respond to

primary
7. Primary reports to client

Hint: In the event of failures, client is informed and retries
*Image taken from: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, SOSP2003

13

Operations: Append

Appends are handled
analogous to write

• Special case (at 5): If data to
append does not fit…

• Primary replica pads chunk
and instructs secondary
copies to do likewise

• Client is asked to request
append with next chunk

Hint: In the event of failures, client is informed and retries
*Image taken from: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, SOSP2003

14

Operations: Snapshot

GFS supports copy-on-write snapshots that allows
check-pointing the state of directory trees.

1. Master revokes leases from chunk primary
2. Master logs updates while performing snapshot
3. Master applies log to copy of meta data
4. On update a copy of the chunk is modified at the

chunk server

15

Master Operation

Performs meta data operations and coordinates
system wide maintenance. Particular features are:

• Namespace management and locking
• Replica placement
• Chunk creation, re-replication and rebalancing
• Garbage collection of deleted chunks
• Stale replica deletion

16

Measures to Attain Fault Tolerance

Replication:
• Multiple replicas per chunk (default 3)
• Intelligent chunk placement across racks
• Masters are shadowed
Data integrity verification:
• Use of checksums for data integrity

(32 bit for each 64kb block)
Monitoring:
• Keep-alive messages
• Log all RPC client requests (i.e. excluding the

transmitted data)

17

Evaluation: Setup

Design is evaluated with micro benchmark and using
real-world clusters.

Micro benchmark:
• One master with two replicas
• 16 chunk servers
• 16 clients
• 100 Mbps Ethernet
Real-world clusters:
• Workloads of a research and a production clusters

are presented in the paper (not presented)

18

Evaluation: Micro Benchmark

•Reads achieve c.a. 75 % of network bandwidth limit
•Writes achieve c.a. 50 % of network bandwidth limit
•Concurrent appends lead to network congestion of
chunk servers (experiment setup is unrealistic according
to authors)

*Image taken from: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, SOSP2003

19

Conclusion

• GFS leverages commodity hard- (and software)
• GFS is optimized for large reads and sequential appends
• Single master paradigm simplifies coordination
• Fault tolerance is achieved through replication, continuous

monitoring and data integrity verification
• High throughput is achieved through:

– Delegating mutations to chunk servers
– Keeping the meta data in memory

• GFS guarantees serialized mutations and atomic meta data
operations

• Risk of stale reads

20

Potential Discussion Points

• Why not accessing partitions directly (i.e., in GFS
chunks are actual files on a Linux FS)?

• What are possible failure modes for snapshot?
• Why is the append bottleneck “unrealistic” in the

evaluation?
• Which artifacts of the GFS design could be handled

by Chubby?
• Why not leveraging OS-level snapshots (i.e. LVM

snapshots)?

	The Google File System
	Motivation for the Google File System
	Outline
	Design Constraints and Decisions
	Centralized Architecture
	Centralized Architecture: GFS Master
	Centralized Architecture: Operation
	Operations: Overview
	Operations: Consistency Overview
	Operations: Reading
	Operations: Chunk Mutations
	Operations: Writing
	Operations: Append
	Operations: Snapshot
	Master Operation
	Measures to Attain Fault Tolerance
	Evaluation: Setup
	Evaluation: Micro Benchmark
	Conclusion
	Potential Discussion Points

