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MTCache Operation

• each Application Server directs its database requests to an
MTCache server, rather than the backend DBMS

• MTCache forwards INSERT, DELETE, UPDATE requests
to the backend database and forwards the response to the
App Server.

• Queries (SELECTs) are handled by MTCache, which
makes a cost-based decision about whether to:

• handle the query locally
• handle the query remotely
• split the query (and the processing) into local and remote

parts

• The backend DBMS lazily propagates updates to
MTCache nodes
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Query Processing 1

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = 1533

• MTCache can execute this query locally, and avoid
contacting the backend DBMS

• If the query OL O ID were 3555, then MTCache would
have to forward the query to the backend DBMS
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Query Processing 2

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(L.QUANTITY)
FROM OrderLine L, Order O, Customer C
WHERE L.OL_O_ID = O.O_ID
AND O.O_C_ID = C.C_ID
AND C.C_LAST = ‘‘Smith’’
AND O.O_ID < 2000

• MTCache can execute part of the query locally and part at
the backend, or it can send the entire query to the
backend. Decision is cost-based
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Parameterized Queries

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Consider this query:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = @ID

• SQL Server may have to optimize this query before the
value of the parameter (@ID) is known.

• In the case, MTCache will generate a dynamic plan.
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Scale-Out Experiment

• workload: TPC-W, which models e-commerce activity
• backend DBMS server: dual CPU
• mid-tier MTCache servers: single CPU
• workload is CPU-bound
• scale-out experiment: increase number of clients and

number of MTCache servers to see whether throughput
(WIPS) scales

• how many WIPS per MTCache, and does it scale linearly?
• by how much does MTCache reduce the load on the

backend DBMS?



Baseline Results (No MTCache)

• browsing workload: 50 WIPS
• shopping workload: 82 WIPS
• ordering workload: 283 WIPS



Scale-Out



More Scale-Out Results

Workload No MTCache 5 MTCache Max
WIPS CPU Util. WIPS CPU Util. MTCache

Browsing 50 90% 129 8% 50+
Shopping 82 90% 199 16% 25+
Ordering 283 90% 271 55% <10



Closing Observations

• complexity
• interaction with many parts of DBMS (query proc, query

opt, replication pub/sub, transaction, . . .)

• physical design is manual
• no synchronization guarantees, not even session

guarantees (note 2005 VLDB paper [gula05])


