
CS848 Paper Presentation
MTCache: Transparent Mid-Tier Database

Caching in SQL Server

Larson, Goldstein, Zhou
ICDE 2004

Presented by Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo

11 January 2010



3-Tier Web Service Architecture

WWW WWW WWW WWW WWW

APP APP APP APP APP

DBMS

Scalability Problem

• Web and App servers are easy to scale out.
• DBMS can become a bottleneck



3-Tier Web Service Architecture

WWW WWW WWW WWW WWW

APP APP APP APP APP

DBMS

Scalability Problem

• Web and App servers are easy to scale out.
• DBMS can become a bottleneck



MTCache

WWW WWW WWW WWW WWW

APP APP APP APP APP

DBMS

Objective

• reduce load on backend DBMS, eliminating bottleneck
• scale out by adding more MTCache nodes



MTCache

MTCache MTCache MTCache MTCache MTCache

WWW WWW WWW WWW WWW

APP APP APP APP APP

DBMS

Objective

• reduce load on backend DBMS, eliminating bottleneck
• scale out by adding more MTCache nodes



MTCache Databases

MTCache MTCache

Customer Orders Orderline Stock

Customer

Orders

Orderline

Stock

Customer

Orders

Orderline

Stock

Backend DBMS

mat. view
mat. view

SELECT cols FROM Customer

WHERE condition

SELECT cols FROM Orderline

WHERE condition



MTCache Operation

• each Application Server directs its database requests to an
MTCache server, rather than the backend DBMS

• MTCache forwards INSERT, DELETE, UPDATE requests
to the backend database and forwards the response to the
App Server.

• Queries (SELECTs) are handled by MTCache, which
makes a cost-based decision about whether to:

• handle the query locally
• handle the query remotely
• split the query (and the processing) into local and remote

parts

• The backend DBMS lazily propagates updates to
MTCache nodes



MTCache Operation

• each Application Server directs its database requests to an
MTCache server, rather than the backend DBMS

• MTCache forwards INSERT, DELETE, UPDATE requests
to the backend database and forwards the response to the
App Server.

• Queries (SELECTs) are handled by MTCache, which
makes a cost-based decision about whether to:

• handle the query locally
• handle the query remotely
• split the query (and the processing) into local and remote

parts

• The backend DBMS lazily propagates updates to
MTCache nodes



MTCache Operation

• each Application Server directs its database requests to an
MTCache server, rather than the backend DBMS

• MTCache forwards INSERT, DELETE, UPDATE requests
to the backend database and forwards the response to the
App Server.

• Queries (SELECTs) are handled by MTCache, which
makes a cost-based decision about whether to:

• handle the query locally
• handle the query remotely
• split the query (and the processing) into local and remote

parts

• The backend DBMS lazily propagates updates to
MTCache nodes



MTCache Operation

• each Application Server directs its database requests to an
MTCache server, rather than the backend DBMS

• MTCache forwards INSERT, DELETE, UPDATE requests
to the backend database and forwards the response to the
App Server.

• Queries (SELECTs) are handled by MTCache, which
makes a cost-based decision about whether to:

• handle the query locally
• handle the query remotely
• split the query (and the processing) into local and remote

parts

• The backend DBMS lazily propagates updates to
MTCache nodes



Synchronization

MTCache MTCache

Customer Orders Orderline Stock

Customer

Orders

Orderline

Stock

Customer

Orders

Orderline

Stock

Backend DBMS

mat. view
mat. view

SELECT cols FROM Customer

WHERE condition

SELECT cols FROM Orderline

WHERE condition



Synchronization
Create New Order

updateinsert insert

MTCache MTCache

Customer Orders Orderline Stock

Customer

Orders

Orderline

Stock

Customer

Orders

Orderline

Stock

Backend DBMS

mat. view
mat. view

SELECT cols FROM Customer

WHERE condition

SELECT cols FROM Orderline

WHERE condition



Synchronization

lazy update propagation

Create New Order

updateinsert insert

MTCache MTCache

Customer Orders Orderline Stock

Customer

Orders

Orderline

Stock

Customer

Orders

Orderline

Stock

Backend DBMS

mat. view
mat. view

SELECT cols FROM Customer

WHERE condition

SELECT cols FROM Orderline

WHERE condition



Query Processing 1

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = 1533

• MTCache can execute this query locally, and avoid
contacting the backend DBMS

• If the query OL O ID were 3555, then MTCache would
have to forward the query to the backend DBMS



Query Processing 1

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = 1533

• MTCache can execute this query locally, and avoid
contacting the backend DBMS

• If the query OL O ID were 3555, then MTCache would
have to forward the query to the backend DBMS



Query Processing 1

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = 1533

• MTCache can execute this query locally, and avoid
contacting the backend DBMS

• If the query OL O ID were 3555, then MTCache would
have to forward the query to the backend DBMS



Query Processing 1

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = 1533

• MTCache can execute this query locally, and avoid
contacting the backend DBMS

• If the query OL O ID were 3555, then MTCache would
have to forward the query to the backend DBMS



Query Processing 2

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(L.QUANTITY)
FROM OrderLine L, Order O, Customer C
WHERE L.OL_O_ID = O.O_ID
AND O.O_C_ID = C.C_ID
AND C.C_LAST = ‘‘Smith’’
AND O.O_ID < 2000

• MTCache can execute part of the query locally and part at
the backend, or it can send the entire query to the
backend. Decision is cost-based



Query Processing 2

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(L.QUANTITY)
FROM OrderLine L, Order O, Customer C
WHERE L.OL_O_ID = O.O_ID
AND O.O_C_ID = C.C_ID
AND C.C_LAST = ‘‘Smith’’
AND O.O_ID < 2000

• MTCache can execute part of the query locally and part at
the backend, or it can send the entire query to the
backend. Decision is cost-based



Query Processing 2

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Suppose query is:
SELECT SUM(L.QUANTITY)
FROM OrderLine L, Order O, Customer C
WHERE L.OL_O_ID = O.O_ID
AND O.O_C_ID = C.C_ID
AND C.C_LAST = ‘‘Smith’’
AND O.O_ID < 2000

• MTCache can execute part of the query locally and part at
the backend, or it can send the entire query to the
backend. Decision is cost-based



Parameterized Queries

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Consider this query:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = @ID

• SQL Server may have to optimize this query before the
value of the parameter (@ID) is known.

• In the case, MTCache will generate a dynamic plan.



Parameterized Queries

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Consider this query:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = @ID

• SQL Server may have to optimize this query before the
value of the parameter (@ID) is known.

• In the case, MTCache will generate a dynamic plan.



Parameterized Queries

• Suppose MTCache has:
SELECT * FROM OrderLine
WHERE OL_O_ID < 3000

• Consider this query:
SELECT SUM(0L_QUANTITY) FROM OrderLine
WHERE OL_O_ID = @ID

• SQL Server may have to optimize this query before the
value of the parameter (@ID) is known.

• In the case, MTCache will generate a dynamic plan.



Scale-Out Experiment

• workload: TPC-W, which models e-commerce activity
• backend DBMS server: dual CPU
• mid-tier MTCache servers: single CPU
• workload is CPU-bound
• scale-out experiment: increase number of clients and

number of MTCache servers to see whether throughput
(WIPS) scales

• how many WIPS per MTCache, and does it scale linearly?
• by how much does MTCache reduce the load on the

backend DBMS?



Baseline Results (No MTCache)

• browsing workload: 50 WIPS
• shopping workload: 82 WIPS
• ordering workload: 283 WIPS



Scale-Out



More Scale-Out Results

Workload No MTCache 5 MTCache Max
WIPS CPU Util. WIPS CPU Util. MTCache

Browsing 50 90% 129 8% 50+
Shopping 82 90% 199 16% 25+
Ordering 283 90% 271 55% <10



Closing Observations

• complexity
• interaction with many parts of DBMS (query proc, query

opt, replication pub/sub, transaction, . . .)

• physical design is manual
• no synchronization guarantees, not even session

guarantees (note 2005 VLDB paper [gula05])


