
CS848 Project Presentation

Cloud Personal Data Management

Robert Robinson



Personal File Management

 Proliferation of files individuals have to manage at home

 Tax information

 Family photos

 Plus many others

 Increasing number of Internet-connected devices at home

 Desktop, Media PC, Smartphone, iPad (?)

 Access files remotely

 Effective backup strategies are rare

 Folder copies are common

2



Existing Solutions

 Dropbox

 Effectively used like an online USB key

 Time Machine

 Designed to back up one machine at a time

 Not designed for network access

 Network file system + backup script

 Provides reliable network file access with backups

 $$$ (2+ machines, 3+ drives)

 Complex to configure

3



Proposed Solution

 Networked file system hosted in the cloud

 Support transparent file system use

 Utilize the FUSE framework for typical file access

 Specialized admin tools expose additional features

 Utilize S3 as a storage backend for personal data

 Focus on small – medium size files, ignore videos for now

 Support single-use workloads

 Enable access from multiple computers

 Interface directly with S3, all logic on-client

4



Major Features

 Versioning of files

 Simplifies retrieving archived file contents

 Redundant storage of files

 Utilize S3’s built-in redundancy to prevent file loss

 Simplified file hierarchy

 Users can find hierarchical file systems confusing

 Trend towards flat file systems

 More flexible file management

 Support Gmail-like tagging for files

5



Challenges in Using S3

 Eventual consistency the only guarantee provided

 Possible to provide POSIX-style guarantees?

 Cross-system locking effectively impossible

 Using an intermediate tier/SimpleDB possible for locks

 Avoided to minimize dependences

 Metadata stored at the file level

 Potentially inefficient to search on

 Depends heavily on Amazon’s implementation

 Opaque to users, can’t depend on its efficiency

6



Proposed Solution

 Versioned file system built on S3

 Every update written to a unique file

 Maintain file system metadata in a log structure

 Log records are write-one, just like files

 Cache log records at client for improved performance

 Potentially perform checkpointing

 Enable users to tag files arbitrarily

 Tags will not be versioned

 A tag will point to the most recent version of a file

 Expose files based not only on name but also by tags

7



Proposed Design

 Each file modification creates a new file

 Write sampleFile.txt

 File named sampleFile.txt.r7-workstation1 created

 Append version and hostname to the file for uniqueness

 File system metadata modifications stored in a log file

 sampleFile.txt => sampleFile.txt.r7-workstation1

 Concurrent writes will create different files

 File name updates applied in a most-recent-wins order

 Updates are never lost

8



File System Metadata

 Structured as a log of file name mappings

 Modifications create a new log record

 Metadata is generated by scanning through all records

 Cache metadata at client to improve performance

 Checkpointing problematic

 Empirically determine worst-case convergence time?

 Log records can arrive before the corresponding file

 Verify file exists before applying log

9



Tag Metadata

 Tags map a user-specified keyword to a file name

 Tags either exist for a file or don’t – can’t tag versions

 Simplicity a key factor

 Structured as a series of log records much like metadata

 All log records for a file contained in a “directory”

 Tags aren’t part of the standard FS API

 Will require additional tools to add/remove tags

 Viewing tags can be integrated into the FS API...

10



File System Structure

 /files

 Contains the most recent copy of each file

 Flat hierarchy, directories not supported

 /tags/<tagName>

 Virtual directory – exposes files stored in /files

 All files that have been tagged with tagName

 /history/<fileName>

 Virtual directory – exposes file history found in /files

 Every version of the specified file

11



S3 Bucket Structure

 /files

 Contains all of the file versions created by the user

 Each file exists as a “directory” with all revisions stored inside

 /files/sampleFile.txt/sampleFile.txt.r7-workstation1

 /metadata

 Contains the file system log records & checkpoints

 /tags

 Contains information about all the created tags

 All logs pertaining to a given tag exist in their own “directory”

 /tags/sampleTag/2010-03-29_10-01-42

12



Implementation Work

 Modifying existing FUSE driver for S3

 s3fs currently provides basic read/write access

 Add support for reading/writing file modification logs

 Expose history & tags via readdir()

 Creating utility to tag files

 Tagging not part of the traditional POSIX file system API

 Requires additional user interaction

13



Conclusions

 Building a file system over eventual consistency is difficult

 User is not guaranteed to see written changes immediately

 Eventual consistency works well with file versioning

 Users never lose data

 Cost of duplicate data ignored at present

 S3 is cheap, and files aren’t huge

 Fixed file system hierarchy easy to understand

 “Tag directories” simplify viewing tagged data

14


