
CS848 Project Presentation

Cloud Personal Data Management

Robert Robinson



Personal File Management

 Proliferation of files individuals have to manage at home

 Tax information

 Family photos

 Plus many others

 Increasing number of Internet-connected devices at home

 Desktop, Media PC, Smartphone, iPad (?)

 Access files remotely

 Effective backup strategies are rare

 Folder copies are common

2



Existing Solutions

 Dropbox

 Effectively used like an online USB key

 Time Machine

 Designed to back up one machine at a time

 Not designed for network access

 Network file system + backup script

 Provides reliable network file access with backups

 $$$ (2+ machines, 3+ drives)

 Complex to configure

3



Proposed Solution

 Networked file system hosted in the cloud

 Support transparent file system use

 Utilize the FUSE framework for typical file access

 Specialized admin tools expose additional features

 Utilize S3 as a storage backend for personal data

 Focus on small – medium size files, ignore videos for now

 Support single-use workloads

 Enable access from multiple computers

 Interface directly with S3, all logic on-client

4



Major Features

 Versioning of files

 Simplifies retrieving archived file contents

 Redundant storage of files

 Utilize S3’s built-in redundancy to prevent file loss

 Simplified file hierarchy

 Users can find hierarchical file systems confusing

 Trend towards flat file systems

 More flexible file management

 Support Gmail-like tagging for files

5



Challenges in Using S3

 Eventual consistency the only guarantee provided

 Possible to provide POSIX-style guarantees?

 Cross-system locking effectively impossible

 Using an intermediate tier/SimpleDB possible for locks

 Avoided to minimize dependences

 Metadata stored at the file level

 Potentially inefficient to search on

 Depends heavily on Amazon’s implementation

 Opaque to users, can’t depend on its efficiency

6



Proposed Solution

 Versioned file system built on S3

 Every update written to a unique file

 Maintain file system metadata in a log structure

 Log records are write-one, just like files

 Cache log records at client for improved performance

 Potentially perform checkpointing

 Enable users to tag files arbitrarily

 Tags will not be versioned

 A tag will point to the most recent version of a file

 Expose files based not only on name but also by tags

7



Proposed Design

 Each file modification creates a new file

 Write sampleFile.txt

 File named sampleFile.txt.r7-workstation1 created

 Append version and hostname to the file for uniqueness

 File system metadata modifications stored in a log file

 sampleFile.txt => sampleFile.txt.r7-workstation1

 Concurrent writes will create different files

 File name updates applied in a most-recent-wins order

 Updates are never lost

8



File System Metadata

 Structured as a log of file name mappings

 Modifications create a new log record

 Metadata is generated by scanning through all records

 Cache metadata at client to improve performance

 Checkpointing problematic

 Empirically determine worst-case convergence time?

 Log records can arrive before the corresponding file

 Verify file exists before applying log

9



Tag Metadata

 Tags map a user-specified keyword to a file name

 Tags either exist for a file or don’t – can’t tag versions

 Simplicity a key factor

 Structured as a series of log records much like metadata

 All log records for a file contained in a “directory”

 Tags aren’t part of the standard FS API

 Will require additional tools to add/remove tags

 Viewing tags can be integrated into the FS API...

10



File System Structure

 /files

 Contains the most recent copy of each file

 Flat hierarchy, directories not supported

 /tags/<tagName>

 Virtual directory – exposes files stored in /files

 All files that have been tagged with tagName

 /history/<fileName>

 Virtual directory – exposes file history found in /files

 Every version of the specified file

11



S3 Bucket Structure

 /files

 Contains all of the file versions created by the user

 Each file exists as a “directory” with all revisions stored inside

 /files/sampleFile.txt/sampleFile.txt.r7-workstation1

 /metadata

 Contains the file system log records & checkpoints

 /tags

 Contains information about all the created tags

 All logs pertaining to a given tag exist in their own “directory”

 /tags/sampleTag/2010-03-29_10-01-42

12



Implementation Work

 Modifying existing FUSE driver for S3

 s3fs currently provides basic read/write access

 Add support for reading/writing file modification logs

 Expose history & tags via readdir()

 Creating utility to tag files

 Tagging not part of the traditional POSIX file system API

 Requires additional user interaction

13



Conclusions

 Building a file system over eventual consistency is difficult

 User is not guaranteed to see written changes immediately

 Eventual consistency works well with file versioning

 Users never lose data

 Cost of duplicate data ignored at present

 S3 is cheap, and files aren’t huge

 Fixed file system hierarchy easy to understand

 “Tag directories” simplify viewing tagged data

14


