
Boxwood: Abstractions as the 

Foundation for Storage Infrastructure

John MacCormick, Nick Murphy, Marc Najork, Chandramohan Thekkath, Lidong Zhou,Microsoft Research

Presented by: Robert Robinson, CS848



Overview

 Motivation for Boxwood

 Overview of Boxwood

 Architecture

 Major system components

 Performance results

 Boxwood in use - BoxFS

 Conclusions & observations

2



Motivation

 Writing distributed & reliable storage systems is hard

 Examples: File systems, database systems

 Issues: Consistency, fault tolerance, scalability, management

 Each implementation handles these issues internally

 Increases complexity

 Idea: Create a high-level abstraction to hide these issues

 Utilize layering to simplify implementation

3



Introduction

 Create a distributed and reliable storage infrastructure

 Provide additional abstractions on top of this storage system

 Application writers don’t have to worry about the details

 Similar to the Google papers discussed previously

 Distributed locking (Chubby)

 Shared metadata storage (Chubby)

 Replicated file contents exposed via a chunk interface (GFS)

 A lot of basic assumptions made:

 Deploy in a highly-connected environment (datacenter)

 Security is not needed

 Failures will have fail-stop behaviour

4



System Architecture

5

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



System Components

6

 Paxos service

 Consensus, storage of global state

 Distributed locking service

 Failure detection

 Replicated block device (RLDev)

 Reliable byte storage

 Chunk manager

 User-visible chunk storage abstraction

 B-tree module

 User-visible B-tree abstraction



Paxos Service

7

 Stores global state across multiple machines

 Uses Paxos to cause state changes to occur in the same order

 Stores number of clients, number of RLDevs, etc

 Can tolerate k failures on 2k+1 machines

 Used by the distributed lock service

 Stores lock master identity, client identities

 Is not involved in reads & writes, just system changes

 Prevents overloading Paxos hosts



Failure Detection

8

 Designed to maintain 2 invariants:

 If a machine fails, it will eventually be detected as dead

 If the service tells a host that another host is dead, it is dead

 Each machine sends keepalives to a group of observers

 A host is failed only if a majority of observers think it has failed

 Synchronous clocks are not required

 A host which don’t receive keepalive acks will kill itself

 Guarantees a machine is dead if its observers thinks it is

 A host queries the observers to determine liveness

 Presumably observer addresses are stored using Paxos



Failure Detection

9

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



Distributed Lock Service

10

 Provides reliable reader/writer locks for multiple clients

 Used by RLDevs, the chunk manager, and the BoxFS server

 Has a single master and multiple backup instances

 The master server, and all clients, are stored using Paxos

 Failure detector used by backups to identify a failed master

 Locks are used as degenerate leases

 Failure detector identifies failed clients and frees their locks

 Only a single master is used

 It is believed additional scalability is not needed

 A single lock will only ever be implemented by a single server



Replicated Logical Devices (RLDev)

11

 The key component of Boxwood

 Behaves like a typical block device

 Uses chained declustering replication

 All information about RLDevs is stored using Paxos

 List of RLDevs, primary and secondary hosts for each RLDev, etc.

 Provides a low level replicated storage interface

 Simplifies the upper layer implementations

 Each RLDev is replicated on multiple machines

 Currently only 2 copies exist, on a primary and a secondary



Replicated Logical Devices (RLDev)

12

 Clients write to the primary, reads from either

 Writes block until replicated to the secondary

 During failure, the other host will accept degraded mode writes

 Degraded mode writes are saved to a log file

 Simplifies reconciliation when the other host comes back

 Primary also maintains a log of all in-flight writes

 Dirty region log, simplifies recovery from transient failures

 Clients can disable this log, but then must handle consistency

 Load balancing can be obtained by migrating RLDevs

 Not a whole lot of detail on this in the paper

 Who makes the decision?



Chunk Manager

13

 A chunk is the basic unit of user storage in Boxwood

 Sequence of consecutive bytes allocated on a RLDev

 Each chunk is uniquely identified with an opaque handle

 4 supported operations

 Allocate, free, read, and write

 Chunk managers are run in pairs for fault tolerance

 Only the primary does alloc and free, either can read & write

 Each chunk manager only manages chunks on a set of RLDevs

 Mappings from handles to chunk offsets are stored on a RLDev

 Updates to the mapping table are protected by the map lock



Chunk Manager

14

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



B-Tree Service

15

 B-trees are commonly used to implement dictionaries

 This B-tree module is the first of many envisioned in Boxwood

 B-trees are commonly used in file systems – useful for BoxFS

 Implements a distributed Sagiv B-link tree

 Locking is much simpler in Sagiv than alternatives

 A global lock is used to synchronize shared access

 Operations on a single B-link tree provide ACID properties

 Clients must enforce ACID properties on multiple trees



Performance Results

16

 RLDev results

 Throughput increases as 

packet size increases, but disk 

utilization decreases

 Chunk Manager results

 Batching chunk allocation 

requests greatly reduces 

latency

 B-tree results

 Scales well when operating on 

many independent trees

 Contention on a single tree 

reduces scalability noticeably

Performance operating on a shared tree



Putting it all together: BoxFS

17

 Builds a typical file system 

on top of Boxwood

 Uses the B-tree service to 

implement the file system 

hierarchy

 Files are directly stored 

using the chunk manager

 Locking is fine-grained

 Multiple clients can lock 

different chunks in the 

same file



Conclusions

18

 Created the tools needed in a distributed storage system

 Distributed consensus, locking, replicated data store

 Layering provides a platform to add new services

 Demonstrated with the B-tree service

 Scaling to small numbers of machines is possible

 Larger configurations unknown

 Developing actual user services is straightforward

 BoxFS demonstrates reasonable performance



Points to Consider

19

 Why has this approach not taken off?

 Will application writers trust the provided infrastructure?

 How many times are storage algorithms written?

 Kind of silly to have a whole framework when only 2 things in 

the world will use it...

 Why are chunks not protected by a checksum?

 GFS made a point of including this

 Comparisons to LVM?


