
Boxwood: Abstractions as the 

Foundation for Storage Infrastructure

John MacCormick, Nick Murphy, Marc Najork, Chandramohan Thekkath, Lidong Zhou,Microsoft Research

Presented by: Robert Robinson, CS848



Overview

 Motivation for Boxwood

 Overview of Boxwood

 Architecture

 Major system components

 Performance results

 Boxwood in use - BoxFS

 Conclusions & observations

2



Motivation

 Writing distributed & reliable storage systems is hard

 Examples: File systems, database systems

 Issues: Consistency, fault tolerance, scalability, management

 Each implementation handles these issues internally

 Increases complexity

 Idea: Create a high-level abstraction to hide these issues

 Utilize layering to simplify implementation

3



Introduction

 Create a distributed and reliable storage infrastructure

 Provide additional abstractions on top of this storage system

 Application writers don’t have to worry about the details

 Similar to the Google papers discussed previously

 Distributed locking (Chubby)

 Shared metadata storage (Chubby)

 Replicated file contents exposed via a chunk interface (GFS)

 A lot of basic assumptions made:

 Deploy in a highly-connected environment (datacenter)

 Security is not needed

 Failures will have fail-stop behaviour

4



System Architecture

5

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



System Components

6

 Paxos service

 Consensus, storage of global state

 Distributed locking service

 Failure detection

 Replicated block device (RLDev)

 Reliable byte storage

 Chunk manager

 User-visible chunk storage abstraction

 B-tree module

 User-visible B-tree abstraction



Paxos Service

7

 Stores global state across multiple machines

 Uses Paxos to cause state changes to occur in the same order

 Stores number of clients, number of RLDevs, etc

 Can tolerate k failures on 2k+1 machines

 Used by the distributed lock service

 Stores lock master identity, client identities

 Is not involved in reads & writes, just system changes

 Prevents overloading Paxos hosts



Failure Detection

8

 Designed to maintain 2 invariants:

 If a machine fails, it will eventually be detected as dead

 If the service tells a host that another host is dead, it is dead

 Each machine sends keepalives to a group of observers

 A host is failed only if a majority of observers think it has failed

 Synchronous clocks are not required

 A host which don’t receive keepalive acks will kill itself

 Guarantees a machine is dead if its observers thinks it is

 A host queries the observers to determine liveness

 Presumably observer addresses are stored using Paxos



Failure Detection

9

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



Distributed Lock Service

10

 Provides reliable reader/writer locks for multiple clients

 Used by RLDevs, the chunk manager, and the BoxFS server

 Has a single master and multiple backup instances

 The master server, and all clients, are stored using Paxos

 Failure detector used by backups to identify a failed master

 Locks are used as degenerate leases

 Failure detector identifies failed clients and frees their locks

 Only a single master is used

 It is believed additional scalability is not needed

 A single lock will only ever be implemented by a single server



Replicated Logical Devices (RLDev)

11

 The key component of Boxwood

 Behaves like a typical block device

 Uses chained declustering replication

 All information about RLDevs is stored using Paxos

 List of RLDevs, primary and secondary hosts for each RLDev, etc.

 Provides a low level replicated storage interface

 Simplifies the upper layer implementations

 Each RLDev is replicated on multiple machines

 Currently only 2 copies exist, on a primary and a secondary



Replicated Logical Devices (RLDev)

12

 Clients write to the primary, reads from either

 Writes block until replicated to the secondary

 During failure, the other host will accept degraded mode writes

 Degraded mode writes are saved to a log file

 Simplifies reconciliation when the other host comes back

 Primary also maintains a log of all in-flight writes

 Dirty region log, simplifies recovery from transient failures

 Clients can disable this log, but then must handle consistency

 Load balancing can be obtained by migrating RLDevs

 Not a whole lot of detail on this in the paper

 Who makes the decision?



Chunk Manager

13

 A chunk is the basic unit of user storage in Boxwood

 Sequence of consecutive bytes allocated on a RLDev

 Each chunk is uniquely identified with an opaque handle

 4 supported operations

 Allocate, free, read, and write

 Chunk managers are run in pairs for fault tolerance

 Only the primary does alloc and free, either can read & write

 Each chunk manager only manages chunks on a set of RLDevs

 Mappings from handles to chunk offsets are stored on a RLDev

 Updates to the mapping table are protected by the map lock



Chunk Manager

14

Source: Boxwood: Abstractions as the Foundation for Storage Infrastructure, J. MacCormick et al.



B-Tree Service

15

 B-trees are commonly used to implement dictionaries

 This B-tree module is the first of many envisioned in Boxwood

 B-trees are commonly used in file systems – useful for BoxFS

 Implements a distributed Sagiv B-link tree

 Locking is much simpler in Sagiv than alternatives

 A global lock is used to synchronize shared access

 Operations on a single B-link tree provide ACID properties

 Clients must enforce ACID properties on multiple trees



Performance Results

16

 RLDev results

 Throughput increases as 

packet size increases, but disk 

utilization decreases

 Chunk Manager results

 Batching chunk allocation 

requests greatly reduces 

latency

 B-tree results

 Scales well when operating on 

many independent trees

 Contention on a single tree 

reduces scalability noticeably

Performance operating on a shared tree



Putting it all together: BoxFS

17

 Builds a typical file system 

on top of Boxwood

 Uses the B-tree service to 

implement the file system 

hierarchy

 Files are directly stored 

using the chunk manager

 Locking is fine-grained

 Multiple clients can lock 

different chunks in the 

same file



Conclusions

18

 Created the tools needed in a distributed storage system

 Distributed consensus, locking, replicated data store

 Layering provides a platform to add new services

 Demonstrated with the B-tree service

 Scaling to small numbers of machines is possible

 Larger configurations unknown

 Developing actual user services is straightforward

 BoxFS demonstrates reasonable performance



Points to Consider

19

 Why has this approach not taken off?

 Will application writers trust the provided infrastructure?

 How many times are storage algorithms written?

 Kind of silly to have a whole framework when only 2 things in 

the world will use it...

 Why are chunks not protected by a checksum?

 GFS made a point of including this

 Comparisons to LVM?


