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Problem

* Central database server becomes a bottle-neck in Content Distributed Networks

* Replication of database among multiple servers removes bottle-neck but ...
* requires low latency consistency which conflicts with low latency between
user and server
» does not scale linearly with cost.

* Traditional proxy-cache based solutions remove bottle-neck but ...

* inefficiently maintain consistency
* scalability is limited by low cache hit-rate
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Operations

Each query has a master proxy server
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Proxy Server Cache

* When proxy server receives update notification, the consistency module
invalidates the query result.

* Even if results can be processed using previously cached results, it is not done



Advantages/ Disadvantages

* Advantages
* High cache hit rate.
* More work offloaded from the backend server

*Disadvantage
e Latency cost of an over all cache miss is greater



Consistency Management

* Any proxy caching a particular query must be notified when an update affects the
result of that query.

* Query Update Multicast Association (QUMA) is used to ensure this requirement.



QUMA Solution

* Multicast groups are created.
* Offline analysis of application’s template database queries is performed.
* Independence analysis is done to determine independence of query-update
pairs.

* Goals
* Any update notification published to a group should affect each query
subscribed to that group
* Related queries should be clustered into same multicast group to reduce
number of notifications.

* Each cached query subscribes to appropriate multicast groups.
* Updates are published to these groups and hence reach the appropriate proxy
server.



QUMA Example

Template Ul:

Template U2:
Template Q3:
Template Q4:

Template Q5:

INSERT INTO inv VALUES
(id = 7, name = 7, qty = ?,
entry.date = NOW())

UPDATE inv SET qty = ?
WHERE id = 7

SELECT gty FROM inv
WHERE name = 7

SELECT name FROM inv
WHERE entry.date > 7

SELECT * FROM inv
WHERE qty < ?
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QUMA Solution

Template

Associated Multicast Groups

Template Ul
Template U2
Template Q3
Template Q4
Template Q5

* Selection predicates are only practical when they are equality based.

{GrourUL:NAME=", GrROUPU1}
{GrouprU2}
{GrourPUL:NAME=", GrROUPU2}
{GrouprU1l}
{GrourU1, GrouprU2}

* The process is not automated yet.
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Consistency Management

* For each multicast group, there is a master multicast group.
 used for communication with master proxies.
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Consistency Management

* Ensures that query cache remains coherent with the central DB but..
* Guarantees full consistency only for single statement transactions.

* Requires a reliable publish/subscribe system.

* Requires serializability guarantees from central database



Implementation

* JDBC Driver
* Proxy runs Apache tomcat as static cache
* Pastry overlay as DHT ( is based on PRR tree)
* Scribe for publish scribe
* does not guarantee reliable delivery.
* Ferdinand cache map is stored in MySQL4
* Backend database is MYSQL4



Evaluation

* Performance comparison with several alternative approaches.

* Performance of DHT based cooperative caching in varying network latency
scenarios.

* Publish/subscribe vs simple broadcast-based system



Evaluation

* Emulab testbed
* Proxy ran on 3 GHz Intel Pentium Xeon, 1GB ram, 10,000 RPM SCSI disk.
* Benchmark clients on 850 MHz client servers.
* Benchmark

* TPC-W bookstore

* RUBIS auction

* RUBBos bulletin board

*Conforms to TPC-W model of emulated browsers



Throughput (WIPS)

Evaluation: Comparison to other approaches
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Evaluation: Cache Miss Rate

SIMPLECACHE Ferdinand
bookstore browsing mix 17% 7%
bookstore shopping mix 22% 14%
auction 40% 17%
bulletin board 20% 11%
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Evaluation: Throughput as a function of latency

Throughput (WIPS)

250

200

150 -+

100 A

Ferdinand
~%-SimpleCache

—\__

T ———

N

C 20 40 50 &0 a0

latency (ms)

37



Evaluation: Throughput compared to broadcast-based consistency

250 4
0 SimpleCache
200 _ W Broadcast l
O Ferdinand
)
S 180
50 A
0 T T .
bookstore bookstore auction bulletin board

browsing mix shopping mix

38



Closing Observations

* No Scalability evaluation shown.

* Not suitable for update intensive application.
» Requires offline analysis of database requests.
* Failure Scenarios need to be deal with.

* No consistency for multi statement transactions.



