CS848 Paper Presentation
Scalable Query Result Caching for
Web Applications

Garrod, Manjhi, Ailamaki, Maggs,
Mowry, Olston, Tomasic

PVLDB 2008

Presented by Rehan Rauf

David R. Cheriton School of Computer Science
University of Waterloo

18th January 2010

Problem

* Central database server becomes a bottle-neck in Content Distributed Networks

* Replication of database among multiple servers removes bottle-neck but ...
* requires low latency consistency which conflicts with low latency between
user and server
» does not scale linearly with cost.

* Traditional proxy-cache based solutions remove bottle-neck but ...

* inefficiently maintain consistency
* scalability is limited by low cache hit-rate

High-level Architecture of Ferdinand

Publish/
Subscribe

Central Server

Ferdinand Proxy Server

Web server

|

Application
server

|

Ferdinand
JDBC driver

DHT overlay
client

Disk-based
query cache

|

Local caching
module

/
/

Master caching
module

I

Consistency
manager

I

Pub / sub client

Operations

Each query has a master proxy server

™

Proxy Server

Master Proxy
Server

Central
Server

Operations

BN

N -
Master Prox
Prox rver > y
Server
A N
Central

Server

Operations

AN —

N -
Master Prox
Prox rver > y
Server
A N
Central

Server

Operations

BN

~ - N
Proxy’Server o M Xy
erv
- N e

!

Central
Server

Operations

BN

~ - N
Proxy’Server o M Xy
erv
- N e

!

Central
Server

Operations

AN —

N - N
Proxy’Server o M Xy
erv
- N -

!

Central
Server

Operations

AN

Proxy Server

Proxy Server

Master Proxy
Server

Central
Server

11

Operations

AN

Proxy Server

Proxy Server o

Update notification

Master Proxy
Server

Central
Server

12

Proxy Server Cache

* When proxy server receives update notification, the consistency module
invalidates the query result.

* Even if results can be processed using previously cached results, it is not done

Advantages/ Disadvantages

* Advantages
* High cache hit rate.
* More work offloaded from the backend server

*Disadvantage
e Latency cost of an over all cache miss is greater

Consistency Management

* Any proxy caching a particular query must be notified when an update affects the
result of that query.

* Query Update Multicast Association (QUMA) is used to ensure this requirement.

QUMA Solution

* Multicast groups are created.
* Offline analysis of application’s template database queries is performed.
* Independence analysis is done to determine independence of query-update
pairs.

* Goals
* Any update notification published to a group should affect each query
subscribed to that group
* Related queries should be clustered into same multicast group to reduce
number of notifications.

* Each cached query subscribes to appropriate multicast groups.
* Updates are published to these groups and hence reach the appropriate proxy
server.

QUMA Example

Template Ul:

Template U2:
Template Q3:
Template Q4:

Template Q5:

INSERT INTO inv VALUES
(id = 7, name = 7, qty = ?,
entry.date = NOW())

UPDATE inv SET qty = ?
WHERE id = 7

SELECT gty FROM inv
WHERE name = 7

SELECT name FROM inv
WHERE entry.date > 7

SELECT * FROM inv
WHERE qty < ?

17

QUMA Solution

Template

Associated Multicast Groups

Template Ul
Template U2
Template Q3
Template Q4
Template Q5

* Selection predicates are only practical when they are equality based.

{GrourUL:NAME=", GrROUPU1}
{GrouprU2}
{GrourPUL:NAME=", GrROUPU2}
{GrouprU1l}
{GrourU1, GrouprU2}

* The process is not automated yet.

18

Consistency Management

* For each multicast group, there is a master multicast group.
 used for communication with master proxies.

19

Cache Miss

Cache Miss

subscribe

21

Cache Miss

Master
Proxy

22

Cache Miss

Cache Miss

24

Cache Miss

Ao |

(o me |
*{ MG }

v

Central
Server

25

Update

Proxy
Server

Master
Proxy

Central
Server

26

Update

Proxy
Server

ve |

MG

MG }
Master
Proxy
Central

Server

27

Update

ve |

MG |

Proxy
Server

Master
Proxy

&

Central
Server

28

Update

<
)

<
Q)

Proxy
Server

/

G |
G |
G |

Master

Proxy

Central

Server

29

Update

MG } Proxy
U MG } G Server
G |
G

Proxy Master

MG
Server Proxy
Proxy
Server
Central
Server

30

Consistency Management

* Ensures that query cache remains coherent with the central DB but..
* Guarantees full consistency only for single statement transactions.

* Requires a reliable publish/subscribe system.

* Requires serializability guarantees from central database

Implementation

* JDBC Driver
* Proxy runs Apache tomcat as static cache
* Pastry overlay as DHT (is based on PRR tree)
* Scribe for publish scribe
* does not guarantee reliable delivery.
* Ferdinand cache map is stored in MySQL4
* Backend database is MYSQL4

Evaluation

* Performance comparison with several alternative approaches.

* Performance of DHT based cooperative caching in varying network latency
scenarios.

* Publish/subscribe vs simple broadcast-based system

Evaluation

* Emulab testbed
* Proxy ran on 3 GHz Intel Pentium Xeon, 1GB ram, 10,000 RPM SCSI disk.
* Benchmark clients on 850 MHz client servers.
* Benchmark

* TPC-W bookstore

* RUBIS auction

* RUBBos bulletin board

*Conforms to TPC-W model of emulated browsers

Throughput (WIPS)

Evaluation: Comparison to other approaches

250

200 4
B NoProxy

150 - B NoCache

100 - O SimpleCache
OFerdinand

50 . '
0 h T T

bookstore browsing mix bookstore shopping mix auction bulletin board

35

Evaluation: Cache Miss Rate

SIMPLECACHE Ferdinand
bookstore browsing mix 17% 7%
bookstore shopping mix 22% 14%
auction 40% 17%
bulletin board 20% 11%

36

Evaluation: Throughput as a function of latency

Throughput (WIPS)

250

200

150 -+

100 A

Ferdinand
~%-SimpleCache

—__

T ———

N

C 20 40 50 &0 a0

latency (ms)

37

Evaluation: Throughput compared to broadcast-based consistency

250 4
0 SimpleCache
200 _ W Broadcast l
O Ferdinand
)
S 180
50 A
0 T T .
bookstore bookstore auction bulletin board

browsing mix shopping mix

38

Closing Observations

* No Scalability evaluation shown.

* Not suitable for update intensive application.
» Requires offline analysis of database requests.
* Failure Scenarios need to be deal with.

* No consistency for multi statement transactions.

