“Cloud Computing Security & Privacy Survey”

CS 848 – Class Project Presentation

Mar 29th, 2010
Introduction

- **Security**
 - Technology, provides assurance
 - confidentiality
 - integrity, authenticity

- **Privacy**
 - Right, provides control
 - anonymity
 - primary & secondary use

- **Cloud Services**
 - **IaaS** (*infrastructure as a service*)
 - Amazon Web Services
 - Eucalyptus Systems
 - **PaaS** (*platform as a service*)
 - Windows Azure
 - **SaaS** (*software as a service*)
 - Google Docs
Control Boundaries

<table>
<thead>
<tr>
<th>In-house Deployment</th>
<th>Hosted Deployment</th>
<th>IaaS Cloud</th>
<th>PaaS Cloud</th>
<th>SaaS Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Data</td>
<td>Data</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>APP</td>
<td>APP</td>
<td>APP</td>
<td>APP</td>
<td>APP</td>
</tr>
<tr>
<td>VM</td>
<td>VM</td>
<td>VM</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>Server</td>
<td>Server</td>
<td>Server</td>
<td>Server</td>
<td>Server</td>
</tr>
<tr>
<td>Storage</td>
<td>Storage</td>
<td>Storage</td>
<td>Storage</td>
<td>Storage</td>
</tr>
<tr>
<td>Network</td>
<td>Network</td>
<td>Network</td>
<td>Network</td>
<td>Network</td>
</tr>
</tbody>
</table>

- **Organization controlled**
- **Organization & service provider share control**
- **Service Provider controlled**

Information Security in Cloud

Presentation by Atif Khan
Information Security Concerns

- Confidentiality- “safe from prying eyes”
 - communication, persistence
- Authenticity- “data is from a known source”
- Integrity- “data has not been tampered with”
 - provenance (computation)
 - persistence
- Non-repudiation- “assurance against deniability”
Information Security Concerns

• Access control - “access & modification by privileged users”
 • individual vs. group access
 • multi-tenancy (PaaS, SaaS)

• Long term security
 • change in authentication/authorization
 • proof of possession
 • confidentiality
 − crypto systems do not provide long term guarantees
 • intersection attacks
Security Enhancing Techniques

• Encryption
 • Symmetric encryption (data)
 • Public key cryptography (identity, authentication)
 – secret private key, published public key
 • Hash / Message Authentication Code (integrity)
 • Digital Signatures (authentication, non-repudiation)
 • TLS/SSL (communication)
Security Enhancing Techniques

• Encryption

 • Homomorphic encryption \[2\]
 - allow for arbitrary computing over encrypted data
 - if \(E(p) = c \) then \(D(2c) = 2p \) (multiplication operation)
 - allows for data processing without decryption
 - promising but not practical so far \[3\]

 • Key management challenges
 - increase as the access control granularity increases

Security Enhancing Techniques

• Secure query & search
 • PIR/SPIR
 - “allows a user to retrieve an item from the server without revealing the item to the database”[4]
 - requires more work

Security Enhancing Techniques

- Secure query & search
 - Encrypted data search
 - matching with encrypted keywords
 - meta-data driven
 - single party query
 - secure anonymous database search (SADS)[5]
 - multi party queries
 - not easy, may require trusted third parties

Security Enhancing Techniques

- Remote data checking
 - Client preprocessing
 - data in chunks along with MAC for each chunk
 - server stores $data \text{ chunk} + MAC$ combinations
 - forward error correction
 - long term recoverability
Data Remanence

• Data Remanence
 • “Residual representation of data after purge”
 • How to purge data in cloud?
 – risk at all levels (SaaS, PaaS, and IaaS)
 • Secure deletion
 – encrypt the data in the cloud
 – data deletion = key destruction
Accountability in Cloud Computing

Presentation by Somayyeh Zangooei
Cloud Computing

Cloud provider

Service S

Network

Cloud customer (runs service S)

Users of service S
Split Administrative Domain

- Cloud customer **loses control** over his computation and data
- What if something goes **wrong**?
 - Example: LinkUp
- Management responsibilities are **split**
- Who should address the problem?
 - **Provider**: does not understand details of computation
 - **Customer**: has only remote access to cloud and thus limited information
Handling Problems

• Who is responsible?

• Customer's perspective:
 • If something is wrong, how will I know? (detection)
 • How can I tell if it's my fault or the cloud's fault?
 • If it's the cloud's fault, how can I convince the provider?
Handling Problems

- Who is **responsible**?

- **Provider's** perspective:
 - If something is wrong, how will I know? (detection)
 - How can I tell if it's my fault or the customer's fault?
 - If it's the customer's fault, how can I convince the customer?
Accountable Clouds

A cloud is **accountable** if

- Faults can be reliably detected
- Each fault can be linked to one party (customer or provider)
Cloud Computing
Audit

- Customer wants to run service S on the cloud
- Agreement A: How the cloud should run S
- Customer can call an Audit primitive
- Audit (A, S, t1, t2): Checks whether the cloud has fulfilled A during the interval [t_1..t_2] for service S
Accountable Clouds

- Properties of accountable clouds
 - **Completeness**: If the agreement is violated, Audit will report this violation
 No false negative
 - **Accuracy**: If the agreement is not violated, Audit will not report a violation
 No false positive
 - **Verifiability**: Audit produces evidence that would convince a disinterested third party
Tamper-Evident Log

- A possible approach for accountability:
 - Cloud records its actions in a tamper-evident log
 - Cloud customer and provider can audit the log and check for faults
 - Use log to construct evidence that a fault does (not) exist
Benefits of Accountable Clouds

- Customer's incentives
 - Can detect violations
 - Can hold the provider responsible
- Provider's incentives
 - Attractive to prospective customers
 - Helps with handling angry support calls
Privacy from Identification

Presentation by Kimiisa Oshikoji
Protect User Identifies

• What can identify a user?
 • Name
 • Birth date
 • Home Address
 • Where you work
 • Information you are interested in
 • Where you are
Questions

• Would it help to encrypt the data?
 • Who is responsible?

• Is the solution downloading the entire database?

• Could spreading out the data over multiple servers help?

• Who do we need to protect against?
PIR

- Private Information Retrieval
 - Identity of the record being accessed is hidden
 - For single server database
 - For multiple server database
SPIR

- Symmetric Private Information Retrieval
- Oblivious transfer
- User's knowledge is restricted to only what they request
ORAM

• Oblivious RAM
 • Data is managed by the user
 • Server has no knowledge or control over data
Privacy Management in Cloud Computing

Presentation by Jason Ho
Privacy Management

- Privacy can be protected by means of:
 - encryption
 - privacy policy setup
- Third-party privacy manager

Encryption

• Levels of encryption

 • No privacy
 – Unsensitive data
 – Cloud provider stores data without any form of encryption

 • Privacy with trusted cloud provider
 – Data is not encrypted before transferred to the cloud
 – Data is stored encrypted by a specific key provided by the cloud provider
 – The cloud provider is trusted to encrypt the data using its key.

 • Privacy with non-trusted cloud provider
 – Encryption outside of cloud provider by a data owner's key (on client end / trusted 3rd party)
 – Data cannot be accessed by the cloud provider
Encryption

- Full encryption
 - Privacy is fully preserved
 - Private data stored in the cloud is entirely encrypted
- Partial encryption
 - Also called obfuscation
 - Portion of private data stored in the cloud is not encrypted
 - Need to set up policy on unencrypted data
Privacy Policy Setup

- Allow data owner to set preference on her data in the cloud:
 - Data usage
 - User access control
 - Duration
3rd-Party Privacy Manager

- Handles encryption and privacy policy
- Between clients and cloud provider
- Benefits
 - Transparency
 - Scalability
 - Vendor independency
- Further investigation
 - How to analyze the encrypted data
Designing Privacy-Aware Clouds

Presentation by Daniel Isaacs
Guidelines For Design

1. Minimize personal information sent to and stored in the cloud

- Analyze the minimal amount of information required from a customer in order for a cloud to operate.
- Cloud applications need to store only data which is planned to be used immediately.
- Storing data mechanisms can be lessened if there is less information to store in a cloud.
2. Protect personal information in the cloud

- Personal information has to be protected from any lost or theft created by intruders.
- Additionally, employees or third parties should only be given access to information they need to fulfill their business purpose.
- To ensure this, security safeguards can be used in order to prevent unauthorized access, copying, or modification of personal information.
3. Maximize user control

- Users or companies must be given access to control the data that is being stored about them.

- Giving control to users about their information generates trust.

- For example, users should be able to access a user interface to modify their personal information on the cloud at anytime.
Guidelines For Design

4. Allow user choice

- Users must be presented with a choice whether they want to share their information or not.
- Designers can create opt in and opt out mechanism, to allow users to decide if they want to share their information or not.
- However, legal requirements for opt in and opt out mechanisms can vary between the different places a design may be used.
5. Specify and limit the purpose of data usage

- When the information is loaded into the cloud, it must be limited to the preferences and conditions set by a user or organization.
- Data usage has to be restricted only to the user’s specified purpose.
- Cloud applications design should always validate the data usage against the allowed usage intentions.
6. Provide feedback

- Cloud applications should be user friendly and clearly indicate privacy functionality by using icons, providing tutorials, help documents, and visual metaphors.

- Applications need to be designed in a way that users are provided with feedback, allowing them to make knowledgeable decisions in terms of privacy.
Tradeoffs of Privacy-Aware Design

- Solutions such as encryption, deprive cloud service providers the opportunity of merging identical data, which would reduce storage space.
- Additionally, encryption hinders the capability to index and process the data.
Privacy Designs

1. A Client-Based Privacy Manager

• Goal is to reduce the risk of data leakage and the loss of privacy on sensitive data processed in a cloud.

• On the client side to help the user protect his privacy when accessing cloud services

• Nonetheless, the privacy manager requires the help from a server-side component for effective operation.
Privacy Designs

1. A Client-Based Privacy Manager
 • Design Features
 – Obfuscation
 – Preference setting
 – Data access
 – Feedback
 – Personae
Privacy Designs

1. A Client-Based Privacy Manager

- Drawbacks
 - The privacy manager needs the full cooperation of the cloud service provider.
 - Cloud service providers that sell the user data to advertisers, may not be willing to allow users to preserve their privacy.
Privacy Designs

2. A Virtual Private Data Repository

- Design a privacy-aware general mechanism to access data in cloud environment applications.
- The VPDR architecture is based on three components:
 - Virtual private disk (VPD)
 - Virtual network buffer (VNB)
 - Virtual cloud storage (VCS).
Privacy Designs

2. A Virtual Private Data Repository

• Drawbacks:
 – The data could be deciphered with vast computing resources.
 – The VCS component complicates the process of deleting and migrating user data
Conclusion

• Cloud offers a much weaker information security model, centred around encryption

• Accountability provides advantages for both cloud customer and cloud provider

• It is important that a cloud user's identity remain secure

• 3rd-party privacy manager gives data owner more control over her own data

• Privacy should be a fundamental design goal, and it should cover both the users and the service providers
Thank you!