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Overview

» Data analysis on 1000's computers

» |[solating a programmer from details of
distributed system

» Based on the observations of typical analysis

tasks at Google




Model of computations
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Model of computations

» Source data is a flat collection of records

» Two phases: record processing and
aggregation

» Computation is commutative and associative

with regard to each record




Model of computations

» Source data is a flat collection of records

» Two phases: record processing and
aggregation

» Computation is commutative and associative

with regard to each record

Easy to do in parallel!
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Sawzall script

» Written by the user in a higher-level language
» Takes only one record at a time

» Emits output to one or more aggregators

Aggregators

» Provided by Sawzall environment

» Used by Sawzall script
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Model of execution -
> Shared-nothing cluster =] h
» Built on existing Google infrastructure |
* Input files in GFS ; |
» Uses MapReduce and Workqueue to schedule g J C
tasks j 1
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Fault-tolerance for free!




Model of execution
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Map Reduce

Sawzall tasks are executed under MapReduce
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Sawzall language (basic)

» Procedural

* Influenced by C and Pascal
» Strongly typed

» Flow control: if, while, for, ...

» Compiled into byte-code

Bt
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Sawzall language — data types {5
» Simple types (int, float, byte and Unicode =
strings) i \
» Collections: array, map, tuple o
» Explicit type conversions i

» I[mplicit type conversion on initialization 3 RIER




Sawzall language (special)

> Typed representation of input records using

Google Protocol Buffers

parsed message Point {

required 1nt32 x = 1;
reqguired inE38—vy = 2;
optional string label = 3;
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Sawzall language (special)

» Quantifiers

when (i: some int; af[i] == Db)
emit index <- 1i;

when (1i: each int; af[i] > 0)
emit sumi<r al[d]ll;

when (1§ &allllxnt—afi] | > |0)
emlit!| posikrvearray | <-| -1




Sawzall language (special)

» Error processing using undefined values

error mode

Using undefined value Using undefined value skips
terminates the program the statements where it is
used
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Aggregators W

» Critical component, must be efficient, interacts Ef
with the system internals E: : /

> Run in Reduce and Combine phase

+ Implemented by Sawzall run-time :

> May be also created in C++ (min 200 l.o.c.) 2

» Not much details about aggregator interaction i

with MapReduce :-(
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Standard aggregators

table collection of string;
emit ¢||<r—“sampie;

table sample (100) of string;
emit o Vsample”;

table sum of int;

emilt| s «—=11=*

top (10) | of-—stirtng;

emit t <- “sample”;

table maximum(10) of string weight float;

emit m <- “lron” weight 7.8;
table quantile(101) of int;
emiti g <- 100;
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Indexed aggregators

» May be quite complex:

x: | table!l topid000) lcountry]: | strangltheour Lnt]
of | hibgis—imty

emit x[“"France”][23] <- 165439976;

» Implemented using a map, using any data type

as an index
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Discussion -l
| -
» Source data model looks like relational? ISl |
» Burden of implementing and supporting a E‘
procedural language with the library |
» Too low level compared to S@L; Pig, Dryad )

» Performance? i

» One MapReduce step in each execution




Thank you
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