Interpreting the Data:
Parallel Analysis with
Sawzall

Rob Pike, Sean Dorward, Robert Griesemer,
Sean Quinlan

Google, Inc.
2005

Presented by Alexey Karyakin

Overview

» Data analysis on 1000's computers

» |[solating a programmer from details of
distributed system

» Based on the observations of typical analysis

tasks at Google

Model of computations

source records

i

i i
\

=B q

Sawzall script

output

-

Model of computations

» Source data is a flat collection of records

» Two phases: record processing and
aggregation

» Computation is commutative and associative

with regard to each record

Model of computations

» Source data is a flat collection of records

» Two phases: record processing and
aggregation

» Computation is commutative and associative

with regard to each record

Easy to do in parallel!

L]

A —— 1~ ;
14

Sawzall script

» Written by the user in a higher-level language
» Takes only one record at a time

» Emits output to one or more aggregators

Aggregators

» Provided by Sawzall environment

» Used by Sawzall script

T
Model of execution -
> Shared-nothing cluster =] h
» Built on existing Google infrastructure |
* Input files in GFS ; |
» Uses MapReduce and Workqueue to schedule g J C
tasks j 1

Model of execution &
> Shared-nothing cluster a ¥ k
» Built on existing Google infrastructure NE| |
* Input files in GFS ; |
» Uses MapReduce and Workqueue to schedule £ ;5_ C
tasks il

—_—

Fault-tolerance for free!

Model of execution

@ir;ew Sawzall script aggregators w)u\tﬂ
\
e =

3B

N\ 7/ \ /

<

N
Map Reduce

Sawzall tasks are executed under MapReduce

e e

II
HIT
1 1
".*k 3
h, L
= -H'-,
=1
5
H,\l
i
| Tl
..Il _" -
I
vy
WL
L
i |-
_.‘_II.__.
s A
:;’. 1/ |\
=
=
..II"\-\.

Sawzall language (basic)

» Procedural

* Influenced by C and Pascal
» Strongly typed

» Flow control: if, while, for, ...

» Compiled into byte-code

Bt

1L
Sawzall language — data types {5
» Simple types (int, float, byte and Unicode =
strings) i \
» Collections: array, map, tuple o
» Explicit type conversions i

» I[mplicit type conversion on initialization 3 RIER

Sawzall language (special)

> Typed representation of input records using

Google Protocol Buffers

parsed message Point {

required 1nt32 x = 1;
reqguired inE38—vy = 2;
optional string label = 3;

b

08 64 10 c8 01 1la 06 63
65 6e 74 65 72

prote—pointiprotofs
Pk Point =-input;

IO 00, (200, “center ik

L]

I B
| s

Sawzall language (special)

» Quantifiers

when (i: some int; af[i] == Db)
emit index <- 1i;

when (1i: each int; af[i] > 0)
emit sumi<r al[d]ll;

when (1§ &allllxnt—afi] | > |0)
emlit!| posikrvearray | <-| -1

Sawzall language (special)

» Error processing using undefined values

error mode

Using undefined value Using undefined value skips
terminates the program the statements where it is
used

=

g

e e

Aggregators W

» Critical component, must be efficient, interacts Ef
with the system internals E: : /

> Run in Reduce and Combine phase

+ Implemented by Sawzall run-time :

> May be also created in C++ (min 200 l.o.c.) 2

» Not much details about aggregator interaction i

with MapReduce :-(

(&5

Standard aggregators

table collection of string;
emit ¢||<r—“sampie;

table sample (100) of string;
emit o Vsample”;

table sum of int;

emilt| s «—=11=*

top (10) | of-—stirtng;

emit t <- “sample”;

table maximum(10) of string weight float;

emit m <- “lron” weight 7.8;
table quantile(101) of int;
emiti g <- 100;

_FI|II e

;u_r':

s i |

Indexed aggregators

» May be quite complex:

x: | table!l topid000) lcountry]: | strangltheour Lnt]
of | hibgis—imty

emit x[“"France”][23] <- 165439976;

» Implemented using a map, using any data type

as an index

e e

II
HIT
1 1
".*k 3
h, L
jou ~
i -
i 5
']
|
| |}
.'|' i
N
vy
WL
L
i |-
_.‘_II.__.
s A
:;’. 1/ |\
=
=
..II"\-\.

Discussion -l
| -
» Source data model looks like relational? ISl |
» Burden of implementing and supporting a E‘
procedural language with the library |
» Too low level compared to S@L; Pig, Dryad)

» Performance? i

» One MapReduce step in each execution

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

