

Interpreting the Data:
Parallel Analysis with

Sawzall

Rob Pike, Sean Dorward, Robert Griesemer,
Sean Quinlan

Google, Inc.
2005

Presented by Alexey Karyakin

Data analysis on 1000's computers

Isolating a programmer from details of

distributed system

Based on the observations of typical analysis

tasks at Google

Overview

Model of computations

Σ

source records

Sawzall script

aggregators

Σ

output

Model of computations
Source data is a flat collection of records

Two phases: record processing and

aggregation

Computation is commutative and associative

with regard to each record

Model of computations

Easy to do in parallel!

Source data is a flat collection of records

Two phases: record processing and

aggregation

Computation is commutative and associative

with regard to each record

Sawzall script
Written by the user in a higher-level language

Takes only one record at a time

Emits output to one or more aggregators

Aggregators
Provided by Sawzall environment

Used by Sawzall script

Model of execution

Shared-nothing cluster

Built on existing Google infrastructure

Input files in GFS

Uses MapReduce and Workqueue to schedule

tasks

Model of execution

Shared-nothing cluster

Built on existing Google infrastructure

Input files in GFS

Uses MapReduce and Workqueue to schedule

tasks

Fault-tolerance for free!

Model of execution

Σ

source records Sawzall script aggregators

Σ

output

Map Reduce

Sawzall tasks are executed under MapReduce

Sawzall language (basic)

Procedural

Influenced by C and Pascal

Strongly typed

Flow control: if, while, for, ...

Compiled into byte-code

Sawzall language – data types
Simple types (int, float, byte and Unicode

strings)

Collections: array, map, tuple

Explicit type conversions

Implicit type conversion on initialization

Sawzall language (special)
Typed representation of input records using

Google Protocol Buffers
parsed message Point {

required int32 x = 1;
required int32 y = 2;
optional string label = 3;

};
08 64 10 c8 01 1a 06 63
65 6e 74 65 72

p = { 100, 200, “center” };

proto “point.proto”;
p: Point = input;

Sawzall language (special)

Quantifiers
when (i: some int; a[i] == b)

emit index <- i;

when (i: each int; a[i] > 0)
emit sum <- a[i];

when (i: all int; a[i] > 0)
emit positive_array <- 1;

Sawzall language (special)

Error processing using undefined values

Using undefined value
terminates the program

Using undefined value skips
the statements where it is

used

error mode

Aggregators
Critical component, must be efficient, interacts

with the system internals

Run in Reduce and Combine phase

Implemented by Sawzall run-time

May be also created in C++ (min 200 l.o.c.)

Not much details about aggregator interaction

with MapReduce :-(

Standard aggregators

c: table collection of string;
emit c <- “sample”;

s: table sample(100) of string;
emit c <- “sample”;

s: table sum of int;
emit s <- 1;

t: top(10) of string;
emit t <- “sample”;

m: table maximum(10) of string weight float;
emit m <- “iron” weight 7.8;

q: table quantile(101) of int;
emit q <- 100;

Indexed aggregators

May be quite complex:

x: table top(1000) [country: string][hour: int]
of hits: int;

emit x[“France”][23] <- 165439976;

Implemented using a map, using any data type

as an index

Discussion

Source data model looks like relational?

Burden of implementing and supporting a

procedural language with the library

Too low level compared to SQL, Pig, Dryad

Performance?

One MapReduce step in each execution

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

