MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjey Ghemawat G ogl , Inc.

Presented By: Hani Khoshdel Nikkhoo
Monday, January 25, 2010

Outline

- Raison d'etre for MapReduce
- Background: Functional Programming
- Map
- Fold (Reduce)
- MapReduce in action
- How to use MapReduce
- Why MapReduce is useful

Raison d'etre for MapReduce

The need to process large amounts of raw data (e.g. 1000 GB) in a short amount of time (a few minutes)

- Parallelism
- Fault-tolerance

Functional Programming

- When a function is applied to a data structure, the data structure does not change, rather the result is stored in a new data structure.
- A function can be used as the argument of another function.

map fist

Creates a new list by applying f to each element of the input list; returns output in order. (Adapted from [2,3])

Fold (Reduce)

fold $\mathrm{f} \mathrm{X}_{0}$ Ist
Moves across a list, applying f to each element plus an accumulator. f returns the next accumulator value, which is combined with the next element of the list (Adapted from [2,3])

MapReduce in Action

- Problem: counting the number of occurrences of each word in a literary collection.
(Ex. Adapted from [4])
Literary
Collection
to be or not to be that is the question
the head is not more native to the heart
brevity is the soul of wit
to be or not to be that is the question
the head is not more native to the heart
brevity is the soul of wit
the head is not more native to the heart
brevity is the soul
of wit

Map Worker \#1
the head is not more map
native to the heart

Map Worker \#2
brevity is the soul of wit

Map Worker \#3
("to", 1),("be",1), ("or",1),("not",1),
("to", 1), ("be", 1), ("that", 1),("is",1),
("the", 1), ("question",1)

Map\#1

the head is not more
native to the heart
$\begin{aligned} & \text { ("the", } 1 \text {), ("head",1), ("is",1), } \\ & \text { ("not",1), ("more",1,,("native", 1), } \\ & \text { ("to",1),("the", 1), ("heart",1) }\end{aligned}$
Map\#2

```
brevity is the soul
```

brevity is the soul
of wit
of wit
("brevity", 1),("is",1),("the",1),
("brevity", 1),("is",1),("the",1),
("soul",1),("of",1), ("wit", 1)

```
("soul",1),("of",1), ("wit", 1)
```

to be or not to be
that is the question

("to", 1), ("be",1), ("or",1), ("not",1),
("to",1),("be", ("that", 1), ("is",1),
("the", 1), ("question",1)

Map\#1

the head is not more native to the heart

- map

```
("the", 1),("head",1),("is",1),
```

("not",1),("more",1),("native",1),
("to",1),("the", 1), ("heart",1)

Map\#2

brevity is the soul of wit
("brevity", 1), ("is", 1), ("the",1), ("soul",1),("of",1), ("wit", 1)

Map\#3

Hmm! How should we partition?

to be or not to be that is the question
map

```
("to", 1),("be",1),("or",1),("not",1),
``` ("to",1), ("be", 1), ("that", 1), ("is", 1), ("the", 1), ("question",1)

\section*{Map\#1}
the head is not more native to the heart

\section*{("the", 1), ("head",1), ("is",1),}
("not",1),("more",1),("native",1),
("to",1),("the", 1), ("heart",1)
brevity is the soul of wit
("brevity", 1), ("is", 1), ("the",1), ("soul",1),("of",1), ("wit", 1)

Map\#3

("not",1), ("that",1), ("question",1),("head",1), ("not",1),("brevity",1)
brevity is the soul of wit
("brevity", 1), ("is", 1), ("the", 1), ("soul",1),("of",1), ("wit", 1)
("the", 1), ("head", 1), ("is", 1), ("not", 1), ("more",1), ("native",1), ("to",1),("the", 1), ("heart",1)

\section*{Map\#1}

("to", 1), ("be", 1), ("or", 1), ("not", 1), ("to",1), ("be", 1), ("that", 1), ("is", 1), ("the", 1), ("question",1)

Map\#2

\section*{Map\#3}
("or",1),("is",1), ("the,1), ("the",1) ("is", 1), ("the", 1), ("is, 1),("the, 1), ("soul",1),("wit",1)

("not", 1), ("that",1), ("question", 1),("head",1), ("not",1),("brevity",1)

\section*{Map\#1}

\section*{Reduce\#1}

the head is not more native to the heart
brevity is the soul of wit

\section*{("the", 1), ("head",1), ("is",1),} ("not",1),("more",1), ("native", 1), ("to",1),("the", 1), ("heart",1)
("brevity", 1),("is",1),("the",1), ("soul",1),("of",1), ("wit", 1)

Map\#2

Reduce\#2
("or",1),("is",1),("the,1), ("the",1) ("is",1), ("the", 1),("is, 1),("the,1), ("soul",1),("wit",1)

("is", 3), ("or",1),("soul",1), ("the",4),("wit",1)

Map\#3

("not",1), ("that", 1), ("question",1),("head",1), ("not",1),("brevity",1)

("brevity", 1),("head",1),("not",2) ("question",1), ("that",1)

\section*{How to use MapReduce}
- The user needs to worry only about two things:
- The Map function
- The Reduce function

\section*{Why is MapReduce useful?}
- The model is easy to use
- Complexities hidden from users
- A variety of problems expressible in this framework
- Scalability
- Parallelism
- Fault-tolerance
- Recovery

\section*{References}
(1)Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In Proc. Symposium on Operating Systems Design and Implementation (OSDI'04), pages 137-150, 2004.
(2)Christophe Bisciglia, Aaron Kimball, \& Sierra Michels-Slettvet. "MapReduce Theory and Implementation", Distributed Computing Seminar, Summer 2007
(3)Aaron Kimball,"Cluster Computing and MapReduce Lecture 2", Google Inc., Summer 2007, Google Code University
http://www.youtube.com/watch?v=-vD6PUdf3Js
(4)Buettcher S., Clarke C.L.A. and Cormack G.V., Information Retrieval: Implementing and Evaluating Search Engines, MIT Press, 2010.```

