
1

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjey Ghemawat
Google, Inc.

Presented By: Hani Khoshdel Nikkhoo

Monday, January 25, 2010

2

Outline

● Raison d'etre for MapReduce
● Background: Functional Programming

● Map
● Fold (Reduce)

● MapReduce in action
● How to use MapReduce
● Why MapReduce is useful

3

Raison d'etre for MapReduce

The need to process large amounts of raw data
(e.g.1000 GB) in a short amount of time (a few
minutes)

– Parallelism
– Fault-tolerance

4

Functional Programming Principles

● When a function is applied to a data structure,
the data structure does not change, rather the
result is stored in a new data structure.

● A function can be used as the argument of
another function.

5

Map

map f lst

Creates a new list by applying f to each element of the
input list; returns output in order. (Adapted from [2,3])

f ff f f

6

Fold (Reduce)

fold f x0 lst

Moves across a list, applying f to each element plus an
accumulator. f returns the next accumulator value, which is
combined with the next element of the list (Adapted from [2,3])

f ff f f returned

initial

7

MapReduce in Action

● Problem: counting the number of occurrences of
each word in a literary collection.

(Ex. Adapted from [4])

to be or not to be
that is the question

the head is not more
native to the heart

brevity is the soul
of wit

Literary
Collection

8

to be or not to be
that is the question

the head is not more
native to the heart

brevity is the soul
of wit

Literary
Collection

split

to be or not to be
that is the question

the head is not more
native to the heart

brevity is the soul
of wit

Worker #1 Worker #2 Worker #3

9

to be or not to be
that is the question map the head is not more

native to the heart map brevity is the soul
of wit map

10

to be or not to be
that is the question map

Map Worker #1

the head is not more
native to the heart map

Map Worker #2

brevity is the soul
of wit map

Map Worker #3

11

to be or not to be
that is the question map

(“to”, 1),(“be”,1),(“or”,1),(“not”,1),
(“to”,1),(“be”,1), (“that”, 1),(“is”,1),
(“the”, 1), (“question”,1)

Map#1

the head is not more
native to the heart map

(“the”, 1),(“head”,1),(“is”,1),
(“not”,1),(“more”,1),(“native”,1),
(“to”,1),(“the”, 1), (“heart”,1)

Map#2

brevity is the soul
of wit map

(“brevity”, 1),(“is”,1),(“the”,1),
(“soul”,1),(“of”,1), (“wit”, 1)

Map#3

12

to be or not to be
that is the question map

(“to”, 1),(“be”,1),(“or”,1),(“not”,1),
(“to”,1),(“be”,1), (“that”, 1),(“is”,1),
(“the”, 1), (“question”,1)

partition

Map#1

the head is not more
native to the heart map

(“the”, 1),(“head”,1),(“is”,1),
(“not”,1),(“more”,1),(“native”,1),
(“to”,1),(“the”, 1), (“heart”,1)

partition

Map#2

brevity is the soul
of wit map

(“brevity”, 1),(“is”,1),(“the”,1),
(“soul”,1),(“of”,1), (“wit”, 1)

partition

Map#3

Hmm! How should we partition?

13

to be or not to be
that is the question map

(“to”, 1),(“be”,1),(“or”,1),(“not”,1),
(“to”,1),(“be”,1), (“that”, 1),(“is”,1),
(“the”, 1), (“question”,1)

partition

(“to”,1), (“be”,1), (“to,1),
(“be”,1), (“to”,1), (“native”,1),
(“heart”,1),(“more”,1), (“of”,1)

Map#1

the head is not more
native to the heart map

(“the”, 1),(“head”,1),(“is”,1),
(“not”,1),(“more”,1),(“native”,1),
(“to”,1),(“the”, 1), (“heart”,1)

partition

(“or”,1),(“is”,1),(“the,1),(“the”,1)
(“is”,1),(“the”,1),(“is,1),(“the,1),
(“soul”,1),(“wit”,1)

Map#2

brevity is the soul
of wit map

(“brevity”, 1),(“is”,1),(“the”,1),
(“soul”,1),(“of”,1), (“wit”, 1)

partition

(“not”,1),(“that”,1),
(“question”,1),(“head”,1),
(“not”,1),(“brevity”,1)

Map#3

14

to be or not to be
that is the question map

(“to”, 1),(“be”,1),(“or”,1),(“not”,1),
(“to”,1),(“be”,1), (“that”, 1),(“is”,1),
(“the”, 1), (“question”,1)

partition

(“to”,1), (“be”,1), (“to,1),
(“be”,1), (“to”,1), (“native”,1),
(“heart”,1),(“more”,1), (“of”,1)

shuffle

(“be”, <1,1>), (“heart”,<1>),
(“more”,<1>), (“native”,<1>),
(“of”,<1>), (“to”, <1,1,1>)

Map#1

the head is not more
native to the heart map

(“the”, 1),(“head”,1),(“is”,1),
(“not”,1),(“more”,1),(“native”,1),
(“to”,1),(“the”, 1), (“heart”,1)

partition

(“or”,1),(“is”,1),(“the,1),(“the”,1)
(“is”,1),(“the”,1),(“is,1),(“the,1),
(“soul”,1),(“wit”,1)

shuffle

(“is”, <1,1,1>),(“or”,<1>),
(“soul”,<1>),(“the”,<1,1,1,1>),
(“wit”,<1>)

Map#2

brevity is the soul
of wit map

(“brevity”, 1),(“is”,1),(“the”,1),
(“soul”,1),(“of”,1), (“wit”, 1)

partition

(“not”,1),(“that”,1),
(“question”,1),(“head”,1),
(“not”,1),(“brevity”,1)

shuffle

(“brevity”, <1>),(“head”,<1>),
(“not”,<1,1>),(“question”,<1>),
(“that”,<1>)

Map#3

15

to be or not to be
that is the question map

(“to”, 1),(“be”,1),(“or”,1),(“not”,1),
(“to”,1),(“be”,1), (“that”, 1),(“is”,1),
(“the”, 1), (“question”,1)

partition

(“to”,1), (“be”,1), (“to,1),
(“be”,1), (“to”,1), (“native”,1),
(“heart”,1),(“more”,1), (“of”,1)

shuffle

(“be”, <1,1>), (“heart”,<1>),
(“more”,<1>), (“native”,<1>),
(“of”,<1>), (“to”, <1,1,1>)

reduce

(“be”, 2),(“heart”,1),(“more”,1),
(“native”,1),(“of”,1),(“to”,3)

Map#1

Reduce#1

the head is not more
native to the heart map

(“the”, 1),(“head”,1),(“is”,1),
(“not”,1),(“more”,1),(“native”,1),
(“to”,1),(“the”, 1), (“heart”,1)

partition

(“or”,1),(“is”,1),(“the,1),(“the”,1)
(“is”,1),(“the”,1),(“is,1),(“the,1),
(“soul”,1),(“wit”,1)

shuffle

(“is”, <1,1,1>),(“or”,<1>),
(“soul”,<1>),(“the”,<1,1,1,1>),
(“wit”,<1>)

reduce

(“is”, 3),(“or”,1),(“soul”,1),
(“the”,4),(“wit”,1)

Map#2

Reduce#2

brevity is the soul
of wit map

(“brevity”, 1),(“is”,1),(“the”,1),
(“soul”,1),(“of”,1), (“wit”, 1)

partition

(“not”,1),(“that”,1),
(“question”,1),(“head”,1),
(“not”,1),(“brevity”,1)

shuffle

(“brevity”, <1>),(“head”,<1>),
(“not”,<1,1>),(“question”,<1>),
(“that”,<1>)

reduce

(“brevity”, 1),(“head”,1),(“not”,2)
(“question”,1), (“that”,1)

Map#3

Reduce#3

16

How to use MapReduce

● The user needs to worry only about two things:
● The Map function
● The Reduce function

17

Why is MapReduce useful?

● The model is easy to use
● Complexities hidden from users
● A variety of problems expressible in this framework

● Scalability
● Parallelism

● Fault-tolerance
● Recovery

18

References

(1)Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proc. Symposium on Operating
Systems Design and Implementation (OSDI'04), pages 137-150,
2004.

(2)Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet.
“MapReduce Theory and Implementation”, Distributed Computing
Seminar, Summer 2007

(3)Aaron Kimball,“Cluster Computing and MapReduce Lecture 2”,
Google Inc., Summer 2007, Google Code University

http://www.youtube.com/watch?v=-vD6PUdf3Js

(4)Buettcher S., Clarke C.L.A. and Cormack G.V., Information Retrieval:
Implementing and Evaluating Search Engines, MIT Press, 2010.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

