
Cloud Transactions Failures Partitioning Replication CAP Views

CS848 - Cloud Data Management

Introduction and Background

Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo

Winter 2010

Cloud Transactions Failures Partitioning Replication CAP Views

What is cloud computing?

• It seems that everybody who is offering an internet service
or using a cluster wants to label themselves “cloud”

• Adjectives associated with clouds
• scalable
• highly-available
• pay-as-you-go
• on demand

• Not much point in trying to pin down what is cloud and
what is not.

Cloud Transactions Failures Partitioning Replication CAP Views

What is cloud computing?

• It seems that everybody who is offering an internet service
or using a cluster wants to label themselves “cloud”

• Adjectives associated with clouds
• scalable
• highly-available
• pay-as-you-go
• on demand

• Not much point in trying to pin down what is cloud and
what is not.

Cloud Transactions Failures Partitioning Replication CAP Views

What is cloud computing?

• It seems that everybody who is offering an internet service
or using a cluster wants to label themselves “cloud”

• Adjectives associated with clouds
• scalable
• highly-available
• pay-as-you-go
• on demand

• Not much point in trying to pin down what is cloud and
what is not.

Cloud Transactions Failures Partitioning Replication CAP Views

Services Spectrum

less flexible

more constrained

less effort

more flexible

more effort

less constrained

Cloud Transactions Failures Partitioning Replication CAP Views

Services Spectrum

less flexible

more constrained

less effort

more flexible

more effort

less constrained

software−as−a−service servers−as−a−service

Cloud Transactions Failures Partitioning Replication CAP Views

A Cloud User

Cloud Transactions Failures Partitioning Replication CAP Views

External Cloud Services

• Benefits
• pay-as-you-go eliminates capital costs
• economies of scale lower operating costs (hardware

procurement, networking, power, administration)
• arbitrary scalability ($100 = 1 server for 1000 hours =

1000 servers for 1 hour)
• bursty service loads
• massively-parallel analytics

• Drawbacks
• communication latency and bandwidth
• autonomy and trust
• data security and privacy

Cloud Transactions Failures Partitioning Replication CAP Views

In-House Clouds

• consolidate physical resources
• higher utilizations, lower costs

• instant and flexible provisioning for new projects and
services

• compatibility with external public clouds

Cloud Transactions Failures Partitioning Replication CAP Views

EC2/Eucalyptus Basics

• images and instances
• management
• storing data

Cloud Transactions Failures Partitioning Replication CAP Views

Images

An image is a signed, encrypted snapshot of a root file system.

Cloud Transactions Failures Partitioning Replication CAP Views

Instance

An instance is a virtual machine.
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

App App App App

OS OSOS

P

M

P

M

P

M

P

virtual server virtual server virtual server

P
P

Mphysical server

Cloud Transactions Failures Partitioning Replication CAP Views

Instance Types

Instances come in different types.

Type VCPU ECU GB I/O $/hr

S 1 1 1.7 Mod 0.085

L 2 4 7.5 High 0.340

XL 4 8 15 High 0.680

HighC XL 8 20 7 High 0.680

HighM XXXXL 8 26 68.4 High 2.400

Pricing for Linux Amazon EC2 instances in N.Va. region as of Dec 4 2009.

Cloud Transactions Failures Partitioning Replication CAP Views

Performance Guarantees in the Cloud

Amazon on instance performance

One EC2 Compute Unit provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. . . . To find out which instance will work best
for your application, the best thing to do is to launch
an instance and benchmark your own application.

Amazon on I/O performance

Each of the instance types has an I/O performance
indicator (moderate or high). Instance types with high
I/O performance have a larger allocation of shared
resources.

Cloud Transactions Failures Partitioning Replication CAP Views

Instance Management

image

Once an instance is running:

• manage it (reboot, terminate, monitor . . .)
• attach persistent storage to the the instance
• manage network access to the instance
• log in!

Cloud Transactions Failures Partitioning Replication CAP Views

Instance Management

run−instances

instance
image

Once an instance is running:

• manage it (reboot, terminate, monitor . . .)
• attach persistent storage to the the instance
• manage network access to the instance
• log in!

Cloud Transactions Failures Partitioning Replication CAP Views

Instance Management

run−instances

instance
image

Once an instance is running:

• manage it (reboot, terminate, monitor . . .)
• attach persistent storage to the the instance
• manage network access to the instance
• log in!

Cloud Transactions Failures Partitioning Replication CAP Views

Authoring Images

1) run−instances

instance
image

Cloud Transactions Failures Partitioning Replication CAP Views

Authoring Images

2) change root filesystem in

the running instance

1) run−instances

instance
image

Cloud Transactions Failures Partitioning Replication CAP Views

Authoring Images

new image

3) bundle−vol

2) change root filesystem in

the running instance

1) run−instances

instance
image

Cloud Transactions Failures Partitioning Replication CAP Views

Value-Added Services

• storage services
• management dashboards (e.g., RightScale)
• monitoring
• automated provisioning and load balancing
• specialized instances, e.g., Amazon Relational Database

Service

Cloud Transactions Failures Partitioning Replication CAP Views

Storing Data

• instance storage (ephemeral)

• Elastic Block Storage (EBS)
• named, persistent, reliable volumes
• block level access (looks like a disk)
• can be attached to a running instance

• network storage services
• S3/Walrus
• SimpleDB, BigTable, PNUTS (and more . . .)

Cloud Transactions Failures Partitioning Replication CAP Views

Storing Data

• instance storage (ephemeral)
• Elastic Block Storage (EBS)

• named, persistent, reliable volumes
• block level access (looks like a disk)
• can be attached to a running instance

• network storage services
• S3/Walrus
• SimpleDB, BigTable, PNUTS (and more . . .)

Cloud Transactions Failures Partitioning Replication CAP Views

Storing Data

• instance storage (ephemeral)
• Elastic Block Storage (EBS)

• named, persistent, reliable volumes
• block level access (looks like a disk)
• can be attached to a running instance

• network storage services
• S3/Walrus
• SimpleDB, BigTable, PNUTS (and more . . .)

Cloud Transactions Failures Partitioning Replication CAP Views

The TPC-C Database

Warehouse

District

Customer

OrderLine

NewOrder

Order

Stock

Item

Cloud Transactions Failures Partitioning Replication CAP Views

The TPC-C NewOrder Operation

• A NewOrder operation places an order for one or more
items for a given customer from a given warehouse.

• steps:
• read tax and discount rates from warehouse, district and

customer tables
• insert new 1 new tuple in each of the order and neworder

tables
• for each item:

• read the price from the item table
• read and update the stock level in the stock table
• insert a tuple into the orderline table

• executing NewOrder as a transaction ensures that it is
atomic

Cloud Transactions Failures Partitioning Replication CAP Views

The TPC-C Payment Operation

• A Payment operation records a payment on a customer’s
account

• steps:
• update customer total payments and payment count fields

in the customer table
• update total payments field in district table
• update total payments field in warehouse table

Cloud Transactions Failures Partitioning Replication CAP Views

Transaction Properties

• Transactions are durable, atomic application-specified
units of work.

Atomic: indivisible, all-or-nothing.
Durable: effects survive failures.

“ACID” Properties of Transactions

A tomic: a transaction occurs entirely, or not at all
C onsistent
I solated: a transaction’s unfinished changes are

not visible to others
D urable: once it is complete, a transaction’s

changes are permanent

Cloud Transactions Failures Partitioning Replication CAP Views

Abort and Commit

A transaction may terminate in one of two ways:
commit: When a transaction commits, any updates it made

become durable, and they become visible to other
transactions. A commit is the “all” in
“all-or-nothing” execution.

abort: When a transaction aborts, any updates it may
have made are undone (erased), as if the
transaction never ran at all. An abort is the
“nothing” in “all-or-nothing” execution.

Cloud Transactions Failures Partitioning Replication CAP Views

Serializability

• Concurrent transactions must appear to have been
executed sequentially, i.e., one at a time, in some order. If
Ti and Tj are concurrent transactions, then either:

• Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made
by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj ’s
updates and Tj will not see Ti ’s.

Cloud Transactions Failures Partitioning Replication CAP Views

Serializability: An Example

• An serial execution of two transactions, T1 and T2:
Hb = w1[x] w1[y] r2[x] r2[y]

• An equivalent interleaved execution of T1 and T2:
Ha = w1[x] r2[x] w1[y] r2[y]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Serializability: An Example

• An serial execution of two transactions, T1 and T2:
Hb = w1[x] w1[y] r2[x] r2[y]

• An equivalent interleaved execution of T1 and T2:
Ha = w1[x] r2[x] w1[y] r2[y]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Serializability: An Example

• An serial execution of two transactions, T1 and T2:
Hb = w1[x] w1[y] r2[x] r2[y]

• An equivalent interleaved execution of T1 and T2:
Ha = w1[x] r2[x] w1[y] r2[y]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Serializability: An Example

• An serial execution of two transactions, T1 and T2:
Hb = w1[x] w1[y] r2[x] r2[y]

• An equivalent interleaved execution of T1 and T2:
Ha = w1[x] r2[x] w1[y] r2[y]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem
If all transactions use two-phase locking, the resulting execution
history will be serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem
If all transactions use two-phase locking, the resulting execution
history will be serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem
If all transactions use two-phase locking, the resulting execution
history will be serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem
If all transactions use two-phase locking, the resulting execution
history will be serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

Snapshot Isolation (SI)

• each transaction T has a start time (start(T)) and a
commit time (commit(T)) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T) and no updates of transactions that commit after
start(T), except . . .

• . . . that T sees its own updates.
• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.

Cloud Transactions Failures Partitioning Replication CAP Views

Snapshot Isolation (SI)

• each transaction T has a start time (start(T)) and a
commit time (commit(T)) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T) and no updates of transactions that commit after
start(T), except . . .

• . . . that T sees its own updates.
• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.

Cloud Transactions Failures Partitioning Replication CAP Views

Snapshot Isolation (SI)

• each transaction T has a start time (start(T)) and a
commit time (commit(T)) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T) and no updates of transactions that commit after
start(T), except . . .

• . . . that T sees its own updates.

• If two transactions Ti and Tj are concurrent, then Ti and Tj
are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.

Cloud Transactions Failures Partitioning Replication CAP Views

Snapshot Isolation (SI)

• each transaction T has a start time (start(T)) and a
commit time (commit(T)) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T) and no updates of transactions that commit after
start(T), except . . .

• . . . that T sees its own updates.
• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.

Cloud Transactions Failures Partitioning Replication CAP Views

Snapshot Isolation (SI)

• each transaction T has a start time (start(T)) and a
commit time (commit(T)) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T) and no updates of transactions that commit after
start(T), except . . .

• . . . that T sees its own updates.
• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.

Cloud Transactions Failures Partitioning Replication CAP Views

SI vs. Serializability

Consider the following execution history:

H = r1[x] r2[x] r1[y] r2[y] w1[x] w2[y] c1 c2

• Is this history serializable? In which order can T1 and T2
be serialized?

• Is this history SI?

Serializability is stronger than SI

Every serializable history is also SI, but some SI histories are
not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

SI vs. Serializability

Consider the following execution history:

H = r1[x] r2[x] r1[y] r2[y] w1[x] w2[y] c1 c2

• Is this history serializable? In which order can T1 and T2
be serialized?

• Is this history SI?

Serializability is stronger than SI

Every serializable history is also SI, but some SI histories are
not serializable.

Cloud Transactions Failures Partitioning Replication CAP Views

SQL Isolation Levels

Level 3: Serializability
Level 2: Repeatable Read like serializability, but phantoms are

possible. Consider:
• Ta orders socks and a bicycle
• Tb reads total value of sock orders, then

reads total value of bicycle orders
Level 1: Read Committed no ordering guarantees, but

transactions will not read uncommitted changes
Level 0: Read Uncommitted here, (almost) anything goes

Cloud Transactions Failures Partitioning Replication CAP Views

Handling Failures

buffer

DBMS

DB

• durability threat: committed updates
may be lost

• atomicity threat: uncommitted updates
may persist

Cloud Transactions Failures Partitioning Replication CAP Views

Handling Failures

buffer

DBMS

DB

• durability threat: committed updates
may be lost

• atomicity threat: uncommitted updates
may persist

Cloud Transactions Failures Partitioning Replication CAP Views

Write-Ahead Logging (WAL)

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)

Cloud Transactions Failures Partitioning Replication CAP Views

Write-Ahead Logging (WAL)

LOG

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)

Cloud Transactions Failures Partitioning Replication CAP Views

Write-Ahead Logging (WAL)

LOG

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)

Cloud Transactions Failures Partitioning Replication CAP Views

Write-Ahead Logging (WAL)

apply

LOG

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)

Cloud Transactions Failures Partitioning Replication CAP Views

Write-Ahead Logging (WAL)

restart

apply

LOG

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)

Cloud Transactions Failures Partitioning Replication CAP Views

Handling DB Failures

LOG

buffer

DBMS

DB

Cloud Transactions Failures Partitioning Replication CAP Views

Handling DB Failures

BACKUP

DB

periodic backup

LOG

buffer

DBMS

DB

Cloud Transactions Failures Partitioning Replication CAP Views

Handling DB Failures

BACKUP

DB

periodic backup

LOG

buffer

DBMS

DB

Cloud Transactions Failures Partitioning Replication CAP Views

Handling DB Failures

restore

BACKUP

DB

periodic backup

LOG

buffer

DBMS

DB

Cloud Transactions Failures Partitioning Replication CAP Views

Handling DB Failures

apply

restore

BACKUP

DB

periodic backup

LOG

buffer

DBMS

DB

Cloud Transactions Failures Partitioning Replication CAP Views

High-Availabilty (HA) DBMS

LOG LOG

buffer

DBMS

DB

buffer

DBMS

DB

PRIMARY BACKUP

workload

Cloud Transactions Failures Partitioning Replication CAP Views

High-Availabilty (HA) DBMS

LOG LOG

buffer

DBMS

DB

buffer

DBMS

DB

PRIMARY BACKUP

workload

Cloud Transactions Failures Partitioning Replication CAP Views

Data Partitioning

�
�

�
�

�
�

�
�

�
�

�
�

-

DBMS
T

R S R S

DBMS A DBMS B
σA(T) σB(T)

• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?
• adding/removing sites involves data redistribution

Cloud Transactions Failures Partitioning Replication CAP Views

Data Partitioning

�
�

�
�

�
�

�
�

�
�

�
�

-

DBMS
T

R S R S

DBMS A DBMS B
σA(T) σB(T)

• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?
• adding/removing sites involves data redistribution

Cloud Transactions Failures Partitioning Replication CAP Views

Data Partitioning

�
�

�
�

�
�

�
�

�
�

�
�

-

DBMS
T

R S R S

DBMS A DBMS B
σA(T) σB(T)

• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?

• adding/removing sites involves data redistribution

Cloud Transactions Failures Partitioning Replication CAP Views

Data Partitioning

�
�

�
�

�
�

�
�

�
�

�
�

-

DBMS
T

R S R S

DBMS A DBMS B
σA(T) σB(T)

• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?
• adding/removing sites involves data redistribution

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T

S

DBMS BDBMS A

R

X

DBMS C

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT

• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T

S

DBMS BDBMS A

R

X

DBMS C

T

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT

• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T TT

S

DBMS BDBMS A

R

X

DBMS C

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT

• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T TT

S

DBMS BDBMS A

R

X

DBMS C

prepare

prepare

commit req

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT
• 2PC phase 1

• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T TT

S

DBMS BDBMS A

R

X

DBMS C

ack

ack

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT
• 2PC phase 1

• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T TT

S

DBMS BDBMS A

R

X

DBMS C

commit

commit

ack

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT
• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Two Phase Commit (2PC)

T TT

S

DBMS BDBMS A

R

X

DBMS C

ack

ack

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT
• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.

Cloud Transactions Failures Partitioning Replication CAP Views

Data Replication

�
�

�
�

�
�

�
�

-�
�

�
�

R S

DBMS A DBMS BDBMS
T

R S S R
T T

• synchronization: how to keep copies consistent?
• replicas are redundant, require extra space
• simple (though expensive) to add sites, simple to remove

sites

Cloud Transactions Failures Partitioning Replication CAP Views

Data Replication

�
�

�
�

�
�

�
�

-�
�

�
�

R S

DBMS A DBMS BDBMS
T

R S S R
T T

• synchronization: how to keep copies consistent?

• replicas are redundant, require extra space
• simple (though expensive) to add sites, simple to remove

sites

Cloud Transactions Failures Partitioning Replication CAP Views

Data Replication

�
�

�
�

�
�

�
�

-�
�

�
�

R S

DBMS A DBMS BDBMS
T

R S S R
T T

• synchronization: how to keep copies consistent?
• replicas are redundant, require extra space

• simple (though expensive) to add sites, simple to remove
sites

Cloud Transactions Failures Partitioning Replication CAP Views

Data Replication

�
�

�
�

�
�

�
�

-�
�

�
�

R S

DBMS A DBMS BDBMS
T

R S S R
T T

• synchronization: how to keep copies consistent?
• replicas are redundant, require extra space
• simple (though expensive) to add sites, simple to remove

sites

Cloud Transactions Failures Partitioning Replication CAP Views

1-Copy Serializability (1SR)

• correctness criterion suitable for replicated databases
• system behaves as if there is a single copy of each object

on which transactions appear to execute sequentially in
some order

Cloud Transactions Failures Partitioning Replication CAP Views

Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R

• to update R, update all replicas of R
• each local site has a local concurrency controller
• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.

Cloud Transactions Failures Partitioning Replication CAP Views

Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R
• to update R, update all replicas of R

• each local site has a local concurrency controller
• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.

Cloud Transactions Failures Partitioning Replication CAP Views

Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R
• to update R, update all replicas of R
• each local site has a local concurrency controller

• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.

Cloud Transactions Failures Partitioning Replication CAP Views

Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R
• to update R, update all replicas of R
• each local site has a local concurrency controller
• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.

Cloud Transactions Failures Partitioning Replication CAP Views

Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R
• to update R, update all replicas of R
• each local site has a local concurrency controller
• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.

Cloud Transactions Failures Partitioning Replication CAP Views

Lazy Master/Slave Replication

• one site is designated the master site
• update transactions must run at the master site
• read-only transactions can run at any site
• master site sends updates lazily, in serialization order, to

the slave sites
• slaves apply the updates in the order in which they are

received
• 2PC is not needed, as all transactions are single-site

Global Serializability

Global 1SR is ensured (why?), but read-only transactions may
see stale data.

Cloud Transactions Failures Partitioning Replication CAP Views

CAP

Consistency: serializability (or SI)
Availability: nodes that are up should eventually respond to

requests
Partition-Tolerance: system should continue to operate even if

it partitions

Brewer’s CAP Conjecture (PODC 2000)

It is impossible build a [distributed database] system that
provides consistency, availability, and partition-tolerance.

Cloud Transactions Failures Partitioning Replication CAP Views

CAP

Consistency: serializability (or SI)
Availability: nodes that are up should eventually respond to

requests
Partition-Tolerance: system should continue to operate even if

it partitions

Brewer’s CAP Conjecture (PODC 2000)

It is impossible build a [distributed database] system that
provides consistency, availability, and partition-tolerance.

Cloud Transactions Failures Partitioning Replication CAP Views

Distributed DB and CAP

Partitioned Data: ensures consistency but availability suffers in
case of site failures or partitions

Eager ROWA Replication: ensures consistency but partitions
can block 2PC and node failures prevent updates,
hurting availability

Lazy Master/Slave Replications: ensures (weak) CAP for
read-only transactions but partitions or master
failure can prevent all updates, hurting availability

Cloud Transactions Failures Partitioning Replication CAP Views

Distributed DB and CAP

Partitioned Data: ensures consistency but availability suffers in
case of site failures or partitions

Eager ROWA Replication: ensures consistency but partitions
can block 2PC and node failures prevent updates,
hurting availability

Lazy Master/Slave Replications: ensures (weak) CAP for
read-only transactions but partitions or master
failure can prevent all updates, hurting availability

Cloud Transactions Failures Partitioning Replication CAP Views

Distributed DB and CAP

Partitioned Data: ensures consistency but availability suffers in
case of site failures or partitions

Eager ROWA Replication: ensures consistency but partitions
can block 2PC and node failures prevent updates,
hurting availability

Lazy Master/Slave Replications: ensures (weak) CAP for
read-only transactions but partitions or master
failure can prevent all updates, hurting availability

Cloud Transactions Failures Partitioning Replication CAP Views

Views

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND

LibraryId = ’UW’

Views
Views are named queries that can be used much like regular
tables.

Cloud Transactions Failures Partitioning Replication CAP Views

Materialized Views

• materialized views are views for which the result of the
underlying view query has been computed and stored

• materialized views may be used (in place of the base
tables) to answer some queries

• one challenge is synchronizing materialized views with the
underlying tables as those tables are update

Full replication is a special case of view materialization.

Cloud Transactions Failures Partitioning Replication CAP Views

Views and Updates
CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.

Cloud Transactions Failures Partitioning Replication CAP Views

Views and Updates
CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.

Cloud Transactions Failures Partitioning Replication CAP Views

Views and Updates
CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.

Cloud Transactions Failures Partitioning Replication CAP Views

Views and Updates
CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?

immediate: view is updated within the transaction
that updates the underlying table

deferred: view updated occurs after the
underlying table is updated

mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table

deferred: view updated occurs after the
underlying table is updated

mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated

mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated
mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated
mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated
mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books. Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books. Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books. Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.

Cloud Transactions Failures Partitioning Replication CAP Views

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.

Cloud Transactions Failures Partitioning Replication CAP Views

Using Materialized Views

• user-visible
• MV is defined and named by an application or administrator
• application may refer to the MV in queries
• application or administrator defines synchronization policies

• transparent
• MVs are defined and created by the system
• applications do not refer directly to the MVs in queries
• query optimizer may rewrite user queries to use MVs

Cloud Transactions Failures Partitioning Replication CAP Views

Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• a special case of view materialization:

• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation

Cloud Transactions Failures Partitioning Replication CAP Views

Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• a special case of view materialization:
• dynamic set of materialized queries

• transparent to applications
• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation

Cloud Transactions Failures Partitioning Replication CAP Views

Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• a special case of view materialization:
• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation

Cloud Transactions Failures Partitioning Replication CAP Views

Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• a special case of view materialization:
• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation

	Cloud
	Transactions
	Failures
	Partitioning
	Replication
	CAP
	Views

