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What is cloud computing?

• It seems that everybody who is offering an internet service
or using a cluster wants to label themselves “cloud”

• Adjectives associated with clouds
• scalable
• highly-available
• pay-as-you-go
• on demand

• Not much point in trying to pin down what is cloud and
what is not.
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A Cloud User
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External Cloud Services

• Benefits
• pay-as-you-go eliminates capital costs
• economies of scale lower operating costs (hardware

procurement, networking, power, administration)
• arbitrary scalability ( $100 = 1 server for 1000 hours =

1000 servers for 1 hour )
• bursty service loads
• massively-parallel analytics

• Drawbacks
• communication latency and bandwidth
• autonomy and trust
• data security and privacy
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In-House Clouds

• consolidate physical resources
• higher utilizations, lower costs

• instant and flexible provisioning for new projects and
services

• compatibility with external public clouds
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EC2/Eucalyptus Basics

• images and instances
• management
• storing data
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Images

An image is a signed, encrypted snapshot of a root file system.
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Instance

An instance is a virtual machine.
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Instance Types

Instances come in different types.

Type VCPU ECU GB I/O $/hr

S 1 1 1.7 Mod 0.085

L 2 4 7.5 High 0.340

XL 4 8 15 High 0.680

HighC XL 8 20 7 High 0.680

HighM XXXXL 8 26 68.4 High 2.400

Pricing for Linux Amazon EC2 instances in N.Va. region as of Dec 4 2009.
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Performance Guarantees in the Cloud

Amazon on instance performance

One EC2 Compute Unit provides the equivalent CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. . . . To find out which instance will work best
for your application, the best thing to do is to launch
an instance and benchmark your own application.

Amazon on I/O performance

Each of the instance types has an I/O performance
indicator (moderate or high). Instance types with high
I/O performance have a larger allocation of shared
resources.
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Instance Management

image

Once an instance is running:

• manage it (reboot, terminate, monitor . . .)
• attach persistent storage to the the instance
• manage network access to the instance
• log in!
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Authoring Images

1) run−instances

instance
image
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Authoring Images

2) change root filesystem in

the running instance

1) run−instances

instance
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Authoring Images

new image
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Value-Added Services

• storage services
• management dashboards (e.g., RightScale)
• monitoring
• automated provisioning and load balancing
• specialized instances, e.g., Amazon Relational Database

Service
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Storing Data

• instance storage (ephemeral)

• Elastic Block Storage (EBS)
• named, persistent, reliable volumes
• block level access (looks like a disk)
• can be attached to a running instance

• network storage services
• S3/Walrus
• SimpleDB, BigTable, PNUTS (and more . . .)
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The TPC-C Database

Warehouse

District

Customer

OrderLine

NewOrder
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The TPC-C NewOrder Operation

• A NewOrder operation places an order for one or more
items for a given customer from a given warehouse.

• steps:
• read tax and discount rates from warehouse, district and

customer tables
• insert new 1 new tuple in each of the order and neworder

tables
• for each item:

• read the price from the item table
• read and update the stock level in the stock table
• insert a tuple into the orderline table

• executing NewOrder as a transaction ensures that it is
atomic
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The TPC-C Payment Operation

• A Payment operation records a payment on a customer’s
account

• steps:
• update customer total payments and payment count fields

in the customer table
• update total payments field in district table
• update total payments field in warehouse table
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Transaction Properties

• Transactions are durable, atomic application-specified
units of work.

Atomic: indivisible, all-or-nothing.
Durable: effects survive failures.

“ACID” Properties of Transactions

A tomic: a transaction occurs entirely, or not at all
C onsistent
I solated: a transaction’s unfinished changes are

not visible to others
D urable: once it is complete, a transaction’s

changes are permanent
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Abort and Commit

A transaction may terminate in one of two ways:
commit: When a transaction commits, any updates it made

become durable, and they become visible to other
transactions. A commit is the “all” in
“all-or-nothing” execution.

abort: When a transaction aborts, any updates it may
have made are undone (erased), as if the
transaction never ran at all. An abort is the
“nothing” in “all-or-nothing” execution.
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Serializability

• Concurrent transactions must appear to have been
executed sequentially, i.e., one at a time, in some order. If
Ti and Tj are concurrent transactions, then either:

• Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made
by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj ’s
updates and Tj will not see Ti ’s.
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Serializability: An Example

• An serial execution of two transactions, T1 and T2:
Hb = w1[x ] w1[y ] r2[x ] r2[y ]

• An equivalent interleaved execution of T1 and T2:
Ha = w1[x ] r2[x ] w1[y ] r2[y ]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x ] r2[x ] r2[y ] w1[y ]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.
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Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem
If all transactions use two-phase locking, the resulting execution
history will be serializable.
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Snapshot Isolation (SI)

• each transaction T has a start time (start(T )) and a
commit time (commit(T )) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that includes all updates of transactions that commit before
start(T ) and no updates of transactions that commit after
start(T ), except . . .

• . . . that T sees its own updates.
• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.
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SI vs. Serializability

Consider the following execution history:

H = r1[x ] r2[x ] r1[y ] r2[y ] w1[x ] w2[y ] c1 c2

• Is this history serializable? In which order can T1 and T2
be serialized?

• Is this history SI?

Serializability is stronger than SI

Every serializable history is also SI, but some SI histories are
not serializable.
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SQL Isolation Levels

Level 3: Serializability
Level 2: Repeatable Read like serializability, but phantoms are

possible. Consider:
• Ta orders socks and a bicycle
• Tb reads total value of sock orders, then

reads total value of bicycle orders
Level 1: Read Committed no ordering guarantees, but

transactions will not read uncommitted changes
Level 0: Read Uncommitted here, (almost) anything goes
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Handling Failures

buffer

DBMS

DB

• durability threat: committed updates
may be lost

• atomicity threat: uncommitted updates
may persist
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Write-Ahead Logging (WAL)

buffer

DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)
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Write-Ahead Logging (WAL)
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DBMS

DB

• update the log before updating
the DB (ensures unfinished
transactions can be undone)

• T ’s changes logged before T
commits (ensures committed
transactions will be durable)
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Handling DB Failures
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High-Availabilty (HA) DBMS
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Data Partitioning
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• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?
• adding/removing sites involves data redistribution
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Two Phase Commit (2PC)

T

S

DBMS BDBMS A

R

X

DBMS C

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT

• 2PC phase 1
• 2PC phase 2

Strict 2PL at each site plus 2PC
ensures global serializability.
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• synchronization: how to keep copies consistent?
• replicas are redundant, require extra space
• simple (though expensive) to add sites, simple to remove

sites
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1-Copy Serializability (1SR)

• correctness criterion suitable for replicated databases
• system behaves as if there is a single copy of each object

on which transactions appear to execute sequentially in
some order
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Eager Read One, Write All (ROWA) Replication

• to read R, read local replica of R

• to update R, update all replicas of R
• each local site has a local concurrency controller
• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.
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Lazy Master/Slave Replication

• one site is designated the master site
• update transactions must run at the master site
• read-only transactions can run at any site
• master site sends updates lazily, in serialization order, to

the slave sites
• slaves apply the updates in the order in which they are

received
• 2PC is not needed, as all transactions are single-site

Global Serializability

Global 1SR is ensured (why?), but read-only transactions may
see stale data.
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CAP

Consistency: serializability (or SI)
Availability: nodes that are up should eventually respond to

requests
Partition-Tolerance: system should continue to operate even if

it partitions

Brewer’s CAP Conjecture (PODC 2000)

It is impossible build a [distributed database] system that
provides consistency, availability, and partition-tolerance.
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Distributed DB and CAP

Partitioned Data: ensures consistency but availability suffers in
case of site failures or partitions

Eager ROWA Replication: ensures consistency but partitions
can block 2PC and node failures prevent updates,
hurting availability

Lazy Master/Slave Replications: ensures (weak) CAP for
read-only transactions but partitions or master
failure can prevent all updates, hurting availability
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Views

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND

LibraryId = ’UW’

Views
Views are named queries that can be used much like regular
tables.
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Materialized Views

• materialized views are views for which the result of the
underlying view query has been computed and stored

• materialized views may be used (in place of the base
tables) to answer some queries

• one challenge is synchronizing materialized views with the
underlying tables as those tables are update

Full replication is a special case of view materialization.
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Views and Updates
CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.
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Synchronization

timing: when relevant updates occur, when is the
materialized view updated?

immediate: view is updated within the transaction
that updates the underlying table

deferred: view updated occurs after the
underlying table is updated

mechanism: how is the materialized view updated?

full refresh: recompute the view after the
underlying table is updated

incremental refresh: compute the view changes
that result from the update, and apply
them to the old materialized view
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Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books. Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks
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Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings. Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings.
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Using Materialized Views

• user-visible
• MV is defined and named by an application or administrator
• application may refer to the MV in queries
• application or administrator defines synchronization policies

• transparent
• MVs are defined and created by the system
• applications do not refer directly to the MVs in queries
• query optimizer may rewrite user queries to use MVs
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Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• a special case of view materialization:

• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation
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