CS848 Paper Presentation
Building a Database on S3

Brantner, Florescu, Graf, Kossmann, Kraska
SIGMOD 2008

Presented by Jason Ho

David R. Cheriton School of Computer Science

University of Waterloo

15 March 2010

[
¥

I Outline

WBackground

QS3

asQs

dUsing S3 As a Disk
Basic Commit Protocols
WExperiment

L Conclusion

Question

Jason Ho

Ve al'aaV If\fJ

H|| BaLI_LJI ound

Qutility computing (aka cloud computing) provides basic
hardware/software ingredients as commodity with low unit cost, AND it
provides scalability, availability, and constant response times for every
client.

1S3 as a popular representative of utility service today which is also part
of Amazon Web Services (AWS) including SQS, EC2.

Jason Ho

C 2 Ye Fal C\ lf'"l-f\ / ’\

Ol ||p rage Sysieim (o53)

WProvide infinite storage for S3 object (1B to 5GB)

1S3 objects can be identified by an URI

Provide SOAP or REST-based interface to access S3 objects:
 get(uri) : returns a object with given URI
* put(uri, bytestream) : Writes bytestream to URI object

* get-if-modified-since(uri, timestamp) : Given the URI, gets new
version of object since specific timestamp

LEach S3 object is associated with a bucket. Also, bucket can be a unit of
security

Jason Ho

I Simple Storage System (S3)
Cost for S3:
 $0.15to store 1GB data in S3 per month
 $0.1 per 10,000 get requests
 $0.1 per 1,000 put requests
1 $0.18 per GB of network bandwidth consumed
1 Thus, S3is good for persistent storage

1S3 latency issue:

0 Reading from S3 takes at least 200 msecs which is 2 to 3 times
longer than reading from local disk

O Writing to S3 takes 3 times long as reading data

Jason Ho

C V\ aYea Vo \ l f\ / -
Hll »] | II|J 9 DYolCllloy)
UAcceptable bandwidth is feasible if data are read in relatively large

chunks of 100KB and more.
| Page Size [KB] | Resp. Time [secs] | Bandwidth [KB/secs] |

10 0.14 714
D) 045 (@I
1,000 387 2584

Table 1: Resp. Time, Bandwidth of S3, Vary Page Size

1S3 implementation detail is not published:
[Stored data is replicated across several data centers

O Availability guaranteed; If one data center fails, data replica in
another data center is used for read and update

Jason Ho

atiinA Cyyctar (COC)
UEUINg oystem (o)

UAllow user to manage infinite number of queues with infinite capacity
(virtually)

I Simple

SQS Queue is a stack of message and it can be referred by URI

dSupports sending and receiving message viaa HTTP or REST-based
interface:

 createQueue(uri) : To create a new queue with given URI

 send(uri, msg) : To send a message to queue identified by given URI.
Returns the ID of the message

* receive(uri, num, timeout) : To receive num messages from the top
n of URI queue. The returned messages are locked in timeout period.

delete(uri, msg-id) : To delete a message with msg-id in a queue
identified by given URI

« addGrant(uri, usr) : To grant a user to access a queue

UEach message is identified by a unique ID

Jason Ho

1 11 I:I"\N C\ lf"l-f\m IC

I Si"‘l"lp e Queuil 1J DYDLCIII\DQS)

UCost for SQS; $0.01 to send 1,000 messages

ONetwork bandwidth costs at least $0.1 per GB of data transferred

SQS implementation detail is not published:

O Messages of queues are replicated in on many machines in different
data centers.

O When clients initiate request, theyshould not be blocked by system
failure and other clients and receive the request results in constant
time.

Jason Ho

N aVae C'\

Hll | I A~ Dicl,
Uoll IH J5/ModUIbK

dClient-Server Architecture of an S3 database:

O Similar to a distributed shared-disk
database system

O Clients retrieve pages from S3 based on
pages’ URI, buffer the pages locally,
update them, and write them back to 53

Page: the unit of transfer records between
clients and S3

UClient consisting "Page Manager”, "Record
Manager”, and “Application”

Client 1

Application

*

Client N

Record Manager

Application

*

Page Manager

Record Manager

Page Manager

-

Figure 1: Shared-disk Architecture

Jason Ho

I Using S3As a Disk : Record Manager

dTo manage records:

a
a

a
a

a

A record is composed of a unique key and a payload data.

Physically, each record is stored in exactly 1 page which in turn is stored as
a single object in S3.

Logically, each record is part of a collection (e.g., table).

A collection is implemented as a bucket in S3 and all the pages that store
records of that collection are stored as S3 object in that bucket.

A collection can be identified by URI.

Provides funtions to access/modify records in collections:

Conmtanllov: medamdA 110 - T crasta o new reco A ~ ~A A~ ina
ucui’eu&cy, puytouu, urij . 10 create a new recora v I d |de U adataina

collection identified by URI

Read(key, uri) : To read the payload data of a record with given key locating
in the collection with uri

Update(key, payload, uri) : To update the payload data of a record.
Delete(key, uri) : To delete a record with given key in the collection with
given uri

Scan(uri) : To scan through all records of a collection of given uri.

Jason Ho

I Using S3Asa Disk : Page Manager

Qimplement buffer pool for S3 pages

USupport reading pages from S3, pinning the pages in the buffer pool,
updating the pages in the buffer pool, and marking the pages as updated

dCreate a new page in S3
L Commit and abort transactions

UThe pages in the buffer pool can be marked as either unmodified,
modified, or new.

O When application commits a transaction, all the updates will be
propagated to S3 and all the affected pages are marked as
o unmodified in the client’s buffer pool

O When application aborts a transaction, all pages marked modified
or new are discarded from the buffer pool

Jason Ho

I Using S3As a Disk : B-Tree Indexes

UB-tree can be implemented on top of the page manager:

O Pages of root nodes and intermediate nodes of the B-tree contains
(key, uri) pairs, where uri refers to the appropriate page at the next
lower level

O Leaf pages of a primary index contains (key, payload data) pairs

O Leaf page of secondary index contains (search key, record key) pairs
dNodes at the same level are linked by pointer
UB-tree is identified by the URI of the root node

Jason Ho

I UsingS3AsaDisk: Logging

UA log record is always associated to a collection.

U3 types of log record:

4 (insert, key, payload)

d (delete, key)

O (update, key, afterimage)
UThese log records are idempotent

Jason Ho

lI Basic Commit Protocols

dProblem: With the S3 database
system previous described, the
updates of one client can be
overwritten by another client even if
the 2 clients update different records.

Client

Client

Client

QWhy? The unit of transfer is a page

. PU Queue
rather than a single record.

log rec.

log rec.

])) log rec. log rec.
LBasic commit protocol of how client log rec. log rec.
commits updates consisting of 2 > ! SQS —
Ste ps LOCK Queue LOCK Queue
O Commit: client generates log
= records for all the updates _ _
committed and sends them to Basic Commit Protocol

SQS

O Checkpoint: log records are
applied to the pages storing on S3

(CONTINUE)

Jason Ho

lI Basic Commit Protocols

UCommit step is carried out in
constant time assuming a constant
number of messages sent per commit

UCheckpoint step can be carried out
asynchronously and outside of the
execution of a client application, and
thus users are not blocked by the
checkpoint step.

LResilient to failures: When client
fails in the commit step, the client
resends all log records when it
restarts.

QViolating atomicity: The client never
come back from failure and loses
uncommitted log records.

LEventual Consistency: all update will
become visible to everyone
eventually.

Client

Step 2. Checkpoint

33

u

Client

log rec.
log rec.
log rec.

LOCK Queue

SQs

Client

PU Queue
log rec.

log rec.
log rec.

LOCK Queue

Basic Commit Protocol

Jason Ho

Il Basic Commit Protocols : PU Queues

UClient propagate log records to
Pending Update queues (PU queues)

Each B-tree has one PU queue

One PU queue is associated to each

leaf node of a primary B-tree of a Step 2. Checkpoint
collection Ay —
log rec. log rec.
log rec. log rec.
log rec. log rec.
\ T OIS —— J
LOCK Queue LOCK Queue
O —

Basic Commit Protocol

Jason Ho

DasSIC LOMIMIt FrotoCOIs 1 LNECKPOoINT FrotoCOI TOI Ydla rages
Qinput of a checkpoint step isa PU
queue
Client
UTo ensure no other clients can carry
out a checkpoint on the same PU
queue currently, a LOCK queue is Step 2. Checkpoint
associated to each PU queue. P o e
S log rec. log rec.
log rec. log rec.
log rec. log rec.
53 sas

[LOCK Queue LOCK Queue]

Basic Commit Protocol

(CONTINUE)

Jason Ho

1. Request to obtain token message from the LOCK queue.
d If the token message is returned, set the timeout.
d If the token message is NOT return, terminate
 Setthe timeout period

Client

Request token message for the PU Q Send token message

. PUQ

Jason Ho

If the page is cached, refresh the cached copy. If the page is not
cached, get a copy of the page from S3

Refresh the page or get a copy of
page if its not in the cache

LOCKQ

Jason Ho

3. Receive as many log records from the PU queue as possible.
4. Apply the log records to the cached copy of the page at the client.

|~ >4 Apply the log record

3. Receive log records from PQ Q

Jason Ho

If timeout is not expired, put the new version of the page to S3

Jason Ho

put new page to S3

If the above steps are carried out successfully within timeout,
delete all the log records received in Step 3 from PU queue

Delete log records

LOCKQ

Jason Ho

"2'2VY 22Vl

D"\f‘ ~~ r.f\
DASIC L _Oi

—F

U Checkpoint on B-tree is complicated because it involves more pages in
the process:

1. Obtain token from Lock Queue and set timeout period
2. Receive log records form the PU Queue
Sort the log records by Key

4. Find leaf node in B-tree for first log record, and refresh the leaf
node from S3.

Apply all log records to that leaf node
If timeout is not expired, put new version of node to S3

If timeout is not expired, delete log records

© N o wun

If there are still log records need to be process, go to step 4.
Otherwise, terminate.

Jason Ho

2’2 Y e Y

Hll DasIiCLOi

—F

U Checkpoint on a page can be carried out by Reader, Writer, Watchdog, or
Owner.

QIf a Writer initiates a checkpoint using the following condition:
O Each data page records the timestamp of the last checkpoint

O When a client commits a log record to a data page or B-tree in S3,
the client computes the difference between its wallclock time and
the timestamp recorded

QIf the absolute value of this difference is bigger than a certain threshold
(checkpoint interval), the writer carries out a checkpoint.

= UFlaw in writer-only strategy: it is possible that a page which is updated
once and then never again is never checkpointed. As a result, the update
never becomes visible.

QSolution: Readers initiate checkpoints if they see a page whose last
checkpoint was a long time ago.

Jason Ho

I Transactional Properties

UAdditional transactional properties such as atomicity and client-side
consistency can be achieved at as low as possible cost without sacrificing
the basic utility computing principles.

Jason Ho

I Transactional Properties : Atomicity

LProblem: the basic commit protocol previous mentioned cannot achieve full
atomicity.

USolution: The client commits log records to a ATOMIC queues rather than PU
queue, and each log record is annotated with an ID which uniquely identify a
transaction on the client

OWhen a client fails and comes back:

d Inthe ATOMIC queue, log records with the matching ID as the commit
record are propagated to PU queue, and then deleted from the ATOMIC
queue.

O These ones with no matching ID are deleted immediately from the
ATOMIC queue and not propagated to PU queues

Jason Ho

I Transactional Properties : Consistency Levels

UClient-side consistency models:

e Monotonic Reads : If a client read the value of a data x, any
successive read operation on x by that client will always return the
same value or a more recent value

« Monotonic Writes : A write operation by a client on data x is
completed before any successive write operation on x by the same
client

e Read your writes : The effect of a write on data x by a client will
always be seen by a successive read operation on x by the same
client

« Write follows read : A write on data x following a previous read on
data x by the same client, is guaranteed to take place on the same
or a more recent value of x that was read.

Jason Ho

I Experiment

UThe experience is carried out in 1 baseline and 3 level of consistency:

Naive approach as baseline:
O write all dirty pages to S3
O Is subject to lost updates, and thus it holds lowest level of consistency.

ULEVEL OF CONSISTENCY DESCRIPTIONS:

« Basic: The protocol only supports the basic commit protocol (Commit and
Checkpoint steps) and supports eventual consistency

¢ Monotonicity : On top of Basic and supports full clients side consistency
models.

« Atomicity : Above Monotonicity and Basic with atomicity. It holds highest
- level of consistency.

QFor the 4 variants, the implementation of read, write, create, index probe and
abort operations in the record manager, page manager, and B-tree index are
identical.

UThe only difference in 4 variants is in the implementation in commits and
checkpoints.

Jason Ho

I Experiment: TPC-W Benchmark

UModels online bookstore with queries asking for availability of products
and an update workload that involves that placement of order:

O retrieve the customer record from the DB

O Search for 6 specific products

O Place orders for 3 of the 6 products
Purpose of the experience:

O To study the running times and cost of the transaction for different
consistency levels.

arameter on the
Ul U\ VI LTI

Jason Ho

I Experiment : Running Time

LEach transaction simulates about 12 clicks (each for 1 sec) of a user

Observation: The higher the level of consistency, the lower the overall
running times

| | Avg. | Max. |
Naive 11.3 | 12.1
Basic 4.0 5.9

Monotonicity | 4.0 6.8
Atomicity 2.8 4.6

Table 3: Running Time per Transaction [secs]

UNaive has the highest running time because it writes all affected pages
of the transaction directly to S3

UThe other approaches are faster, because clients only propagate log
record to SQS instead of the whole pages.

Qimprovement: latency of the commit can be reduced by sending several
messages in parallel to S3 and SQS.

Jason Ho

I Experiment: Cost

Shows overall cost / 1000 transactions.

UThe cost was computed by running a large number of transactions,
taking the cost measurements of AWS, and dividing the total cost by the

number of transaction.
Observation: Cost increases as the level of consistency increases.

| | Total | Chckp. + Atomic (). | Transaction |

Naive 0.15 0 0.15
Basic 1.8 1.1 0.7
Monotonicity 2.1 1.4 0.7
Atomicity 2.9 2.6 0.3
u Table 4: Cost per 1000 Transactions [$]

Winteraction with SQS is expensive.

dimprovement: Cost can be reduced by setting the checkpoint interval to
a larger value which would decrease the freshness of the data

Jason Ho

I Experience :Vary Checkpoint Interval

Shows the cost per 1000 transaction as
a function of the checkpoint internal for
Basic and Atomicity approaches.

Monotonicity approach is between
Basic and Atomicity

A Observation:

d Checkpointinterval below 10
seconds effectively involved
initiating a checkpoint for every
update that was committed.

A Increasing the checkpoint interval
decrease the cost. With a
checkpoint interval above 10
seconds, the cost is quickly
reduced in both Atomicity and
Basic approaches.

£ 1 1000 Transactions

T
Atomicity —+
Basic --—-u-—

1 1 1
5 15 20 25
Checkpaoint Interval [secs]

Cost per 1000 Transacts., Vary Checkpoint Interval

Jason Ho

I Closing Observation

QUtility computing is not attractive for high-performance transaction
processing.

Qin this paper, strict consistency is abandon for scalability and availability,
but there might be scenarios where ACID properties are more important
than scalability and availability

dThe system described is not able to carry out chained I/O to scan
through several pages on S3.

URight security infrastructure is needed for S3 system

Jason Ho

I Question?

