
Modifications to MapReduce

Evguenia (Elmi) Eflov

March 29, 2010

1 / 24



Presentation Outline

1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

2 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

3 / 24



MapReduce

MapReduce is a framework that allows its user to
implement tasks that fit into the MapReduce model fast,
by specifying two functions, Map and Reduce

MapReduce framework handles distributing work required
between machines in the cluster, communication between
nodes, scheduling and error handling

Input data is accepted in the form of files, though input
from other sources, for example, a database, can be
consumed

4 / 24



MapReduce Details

Map Reduce
(k1, v1) (k2, v2) (k3, v3)

Map maps each input (k1, v1) pair to 0 or more (k2, v2)
pairs

Reduce processes all values v2 for a given key k2 to
produce 0 or more output (k3, v3) pairs

5 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

6 / 24



Optional Elements of MapReduce

In addition to the required functions, Map and Reduce,
MapReduce allows the user to specify the following optional
functions

Combiner function to process output of Map locally,
before transferring it to the other machines - in most
cases, Combiner is similar to Reduce in effect

Partitioner function that determines how the output of
Map is partitioned for processing by Reduce

7 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

8 / 24



Problem

Processing done by Map function can be expensive and
generate a large amount of intermediate data

There may be two or more tasks that require output of
the same Map function, but processed by different
Reduce functions that operate on the same key, or the
key of one is a subset of the key of the other, for example
k1 and k1, k2

Such sets of tasks could benefit from ability to share and
reuse common parts of the data and processing

9 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

10 / 24



What is Currently Possible with MapReduce?

There are three possible solutions to the problem using
existing MapReduce implementations

Implementing each task as a separate MapReduce task

Splitting the tasks into a common processing step and
task-specific processing steps, and executing each such
step as a separate MapReduce task

Implementing a Reduce function that combines both (or
all of the) Reduce functions required for the tasks

11 / 24



Separate Tasks Approach

This is not the optimal approach if

Common processing required by the tasks is time
consuming

Intermediate results generated by Map are large

There is a large number of unique keys in the Map output

12 / 24



Common Processing as a Separate Step Approach

This approach requires a separate Map and Reduce
implementation for the common processing

The result of the first step is sorted on the maximal key
of all the Reduce functions

Subsequent steps accept output of the first step as input,
using either no-op Map functions or Map that move part
of the key into the value

Reduce functions of the subsequent steps perform the
required processing

13 / 24



Example of Separating Common Processing

Common first step

Map1 No-op Reduce
(k1, v1) ((k2, k3), v2) ((k2, k3), v2)

Reduce1

No-op Map Reduce1
((k2, k3), v2) ((k2, k3), v2) (k4, v3)

Reduce2

Map2 Reduce2
((k2, k3), v2) (k2, (k3, v2)) (k4, v3)

14 / 24



Notes About the Example

Note that after the common step the result is sorted on
(k2, k3), therefore, neither of the following steps requires
additional sorting of the inputs (though partitioning is still
require)

If the output size of the common step is large, reading
and writing of intermediate data for the Reduce steps
may constitute a significant portion of execution time for
the process

This approach might perform better than the previous
approach if initial processing is time consuming, or
intermediate results contain a large number of unique keys

15 / 24



Combining Reduce Functions

This approach avoids repetition of any part of the
processing

Combined Reduce function is required to do its own
sorting and partitioning of data for a key if different keys
were required for the original Reduce functions, since
partitioning by the minimal shared key will be provided by
MapReduce

Output generated by this approach has to combine the
results of all the Reduce functions into a single record -
this may not always be convenient

Output then needs to be processed to separate the results
of different Reduce functions - this may not always be
convenient

16 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

17 / 24



Extension to MapReduce

Another way to handle the motivating problem is to allow the
same output of Map function to be processed by more than
one Reduce (and possibly Combiner) function

Map

Reduce1

Reduce2

(k1, v1)

((k2, k3), v2)

(k2, (k3, v2))

(k4, v4)

(k5, v5)

18 / 24



Details

The idea of this proposal is to take advantage of the best
part of the Combined Reducer approach while avoiding its
disadvantages

This approach requires modifying MapReduce as follows:

Enable the user to specify the subset of common key a
Reduce function should use as a key (if different from
the complete key)
Enable the system to run two different Reduce tasks on
the same intermediate input file
Enable the system to produce two output file sets in
parallel

19 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

20 / 24



Implementation

Amazon EC2 Linux-based instances with Hadoop

Freebase data dump will be used as sample data, possibly
followed by Wikipedia data dump - both are public data
sets available on AWS

Modifications will be made to the MapReduce code to
implement the proposed changes

21 / 24



1 MapReduce Reminder
MapReduce
Extensions to MapReduce

2 Problem
Problem Statement

3 Current Solutions
Solutions Possible with MapReduce

Separate Tasks Approach
Separation of Common Processing Approach
Combining Reduce Functions

4 Project Proposal
Proposed Extension to MapReduce
Implementation
Other Possible Extensions

22 / 24



Future Work

The project idea can be generalized to accommodate not only
multiple Reduce tasks, but also to use multiple Map tasks to
supply data for a single Reduce task.
This can be useful if data from multiple sources - web pages,
news feeds, databases, plain text files - needs to be aggregated
and/or processed in the same way to generate a single result
set

23 / 24



Questions

24 / 24


	Outline
	MapReduce Reminder
	MapReduce
	Extensions to MapReduce

	Problem
	Problem Statement

	Current Solutions
	Solutions Possible with MapReduce

	Project Proposal
	Proposed Extension to MapReduce
	Implementation
	Other Possible Extensions


