
A Practical Scalable Distributed B-Tree
CS 848 Paper Presentation

Marcos K. Aguilera, Wojciech Golab,
Mehul A. Shah

PVLDB ’08

March 8, 2010

Presenter: Evguenia (Elmi) Eflov



Presentation Outline

1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Distributed (key,value) Storage

The paper presents three motivating examples:

The back-end of a multiplayer game. Multiplayer
games need to store and manage data for thousands of
players while providing low latency access and very high
data consistency

Metadata storage for a cluster file system.
Metadata access is often the bottleneck in such systems.
Metadata changes, for example, file renaming or
relocation, in cluster file systems need to be atomic

Secondary indexes. A lot of application require more
than one index on a set of data to guarantee fast access
based on different conditions. As in the two previous
examples, data changes need to be atomic



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



B+tree

B-tree is a tree data structure that stores values sorted by
key and allows updates and lookups in amortized
logarithmic time

B+tree is a form of B-tree where inner nodes of the tree
store keys and pointers, and leaf nodes store key-value
pairs



Distributed B+tree



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Sinfonia

Sinfonia is a distributed data storage service that provides
ACID properties for the application data

Sinfonia provides a data manipulation primitive, a
minitransaction

Minitransaction ...

Consists of 3 (possibly empty) sets of operations
Operations are comparisons, reads, and writes
Reads and writes are performed only if all of the
comparisons are successful
Is performed as part of a two-phase commit
Some varieties can be performed in a single phase



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Assumptions

The B-tree operates in a data center environment. This
guarantees high bandwidth, low latency connections
between client and server machines

Individual machines can fail without causing the system
to stall, but network partitions will stall the system

B-tree is not going to grow or shrink rapidly



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Design of the B-tree



Design of the B-tree

Each server in the system stores some number of inner
and leaf nodes of the B-tree

Each server in the system stores the version table of all
the inner nodes of the B-tree

Each client caches all inner nodes of the B-tree, and uses
this cache while executing a transaction

During a transaction, the client composes a set of reads
and writes required

At commit time, Sinfonia’s minitransaction is used to
perform the B-tree operations required on the server data

Comparisons are added by the B-tree client library to
guarantee data consistency



B-tree Operations Efficiency

To make the B-tree efficient, the following three techniques
are used:

Clients use optimistic concurrency control, which works
well unless the B-tree is rapidly shrinking or growing

Since version numbers of the inner nodes are stored at
each server, inner node versions can be checked at any
server in the system, for example, at the server where a
leaf node being accessed is stored

Inner B-tree nodes are lazily replicated by clients - nodes
that a particular client does not access may be stale or
not present on the client



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Standard B-tree Operations



Migration Operations

The distributed B-tree supports the following additional
operations:

Migrate(x , s) - migrates node B-tree node x to server s

The following operations for multi-node migration:



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Why are transactions required?

In order to guarantee data consistency, each data
manipulation on the B-tree has to be performed
atomically, for example, renaming of a file in the cluster
file system or transferring an item and payment for the
item between characters in the computer game

While a minitransaction provided by Sinfonia is sufficient
to perform the necessary B-tree node manipulations, it is
tedious of the user of the B-tree to code in terms of the
minitransaction

The B-tree provides transaction interface as a way for the
user to define all the necessary Read and Write
operations within a transaction, while adding necessary
comparisons to guarantee data consistency



Transaction Interface



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Extensions

The following extensions are suggested to enhance the existing
implementation

Enhanced migration tasks - migration tasks that help
the system adapt to seasonal variations or balance the
load aggressively can be implemented

Dealing with hot-spots - migration task to migrate
popular keys to different servers can be implemented,
including migration of the keys that are currently stored
in the same node

(continued)



Extensions

Varying the replication factor of inner nodes -
replicating version numbers of the inner nodes on lower
levels of the tree less aggressively could decrease the cost
of modifying those nodes

Finer-grained concurrency control to avoid false
sharing - if concurrency control operated on keys (or
small groups of keys) rather than nodes, the number of
conflicts could be decreased



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Experimental Setup

10-byte keys, 8-byte values, 12-byte pointers - 4 bytes
specify server, 8 bytes - offset within the server

4 KB nodes, with leaf nodes storing 220 key-value pairs
and inner nodes storing 180 key-pointer pairs

Same number of servers and clients

Each client has 4 parallel threads, each thread issues a
new request as soon as the current request is completed

Key space consists of 109 elements, with keys chosen
uniformly, at random for each operation



Workloads

The following workloads are used in both scalability and
migration experiments

Insert

Lookup

Update - values for existing keys are updated

Mixed - 60% lookups and 40% updates

“Before the insert workload, the B-tree was pre-populated
with 40,000 elements rather than starting with an empty
B-tree.”

Were the experiments performed in the order they are
presented in?



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Results of the Scalability Experiments



Results of the Migration Experiments

For migration experiments, Move task was performed by a
migration client while the rest of the setup for the
corresponding experiment was executed

Migration rate was 55.3 ± 2.7 nodes/s (around 10000
key-value pairs/s) on an idle system, and less than 5 nodes/s
when executed with other tasks.



1 Background
Problem
Distributed B+tree
Sinfonia

2 Distributed B-tree Implementation
Assumptions
Design of the B-tree
B-tree Operations
Transactions
Extensions

3 Experimental Results
Workload
Results

4 Discussion
Questions



Some Discussion Questions

Are experiments representative of the workload of the
motivating examples?

Would larger transactions have different scalability?

Can co-locating of the lower level inner nodes and the
corresponding leaf nodes increase the throughput of the
system?


	Outline
	Background
	Problem
	Distributed B+tree
	Sinfonia

	Distributed B-tree Implementation
	Assumptions
	Design of the B-tree
	B-tree Operations
	Transactions
	Extensions

	Experimental Results
	Workload
	Results

	Discussion
	Questions


