
HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies

for Analytical Workloads

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi,
Avi Silberschatz, A. Rasin

Yale University
VLDB 2009

Presented by:
Anup Kumar Chalamalla

Outline

 Context: Analytical DBMS Systems

 Background: Parallel Databases and Query
Processing

 Key Properties for Very Large Scale Data
Analytics

 Architecture of HadoopDB

 Performance and Scalability Results

Context: Analytical DBMS Systems

Multi-dimensional structured data

Star schema: Fact tables and dimension tables

Types of queries

TableScan, Joins, multi-dimensional aggregation

(CUBE), Pattern Mining, Top-K and ranking

Data explosion in terabytes and petabytes

Background: Parallel Databases

 DBMSs deployed on a shared nothing architecture

 Query execution is divided equally among all
machines

 Results are computed on different machines and
transferred over the network

 Important tasks:

◦ Partitioning the tables on to several machines

◦ Parallel evaluation of relational query operators

Background: Query Processing

 SELECT *

FROM R CROSS JOIN S

WHERE R.a > 100 AND

S.b < 1000

 Pipelining: Transfer

intermediate results of

one operator to another

operator on the fly

Key properties for very large scale data analytics

 Performance: Computing the results of a query faster

 Fault Tolerance: Rescheduling parts of query execution

in the case of node failures

 Adapt to heterogeneous distributed environment:

Getting the same performance from all the machines is

difficult

 Flexible Query interface: Should support ODBC/JDBC

and user defined functions

Architecture of HadoopDB

Data Loader

 All data initially resides on the HDFS; table data is stored as raw files

 Tables are partitioned (on-demand) and partitions are loaded on to
the nodes’ file systems

 Data that comes at each node is re-partitioned in to small chunks

 From there it is bulk-loaded in to the DBMS and indexed if required

 Hash Partitioning :

◦ Global Hasher: Partition the tables which are stored as raw files on HDFS and
distribute them

◦ Local Hasher: Partition the single-node data in to file chunks and store them
in to disk blocks for efficient processing

Catalog

 Metadata about tables and their partitions:

◦ Attribute on which partition of a table exists in the cluster

◦ Size and location of the blocks of a partition on a particular node

◦ Replicas, if replicas exist for the partitions

 For each node store the DBMS connection details

◦ IP Address, Driver class, username and password, database name,
etc.

 MetaStore: Table schema information on the DBMSs in the
nodes. Used by SMS Planner for query plan generation

SMS Planner
 Extends Hive, an SQL query processor built on top of

Hadoop

 Parses the SQL Query, and transforms it in to an operator
DAG or the logical plan

 Generates an optimal query plan after doing any
transformations

 It breaks up the plan in to a batch of map and reduce
functions

 Checks if a partitioning of a table exists on the join or group-
by attributes and decides on map and reduce functions

SMS Planner on an example query

 SELECT YEAR(saleDate),

SUM(revenue)

FROM sales GROUP BY

YEAR(saleDate);

SUM

GROUP-BY

SCAN

sales

SMS Planner and Hadoop Jobs

 SMS Planner generates map or reduce functions that
encapsulate code about database connection and SQL query to
execute

 A DatabaseConnector object is created by a Map function to
connect to the database using JDBC and execute SQL query

 Assuming tables are loaded in the database, an execution of a
map function triggers a database connection, query execution
and transforming the ResultSet in to key value pairs

 Reduce function simply aggregates over the repartitioned
tuples and produces output to the files

Salient Features of HadoopDB

 Hadoop is used :

◦ To store the data using the HDFS file system

◦ For task scheduling, Hadoop’s JobTracker is used to schedule Map and
Reduce tasks on the nodes

◦ As network communication layer to transfer the intermediate results of
SQL query computations between nodes

 An SQL Query is initially broken down in to a batch of MapReduce
jobs and then scheduled using Hadoop

 Ultimately execution of relational query operators happens in a
single node DBMS

 Queries are embedded in map and reduce functions and executed

 Results are returned as key value pairs after query execution

Performance and Scalability Benchmark

 Architectures compared:
◦ Hadoop

◦ HadoopDB

◦ Vertica

◦ DBMS-X

 Tasks evaluated in the benchmark:
◦ Grep

◦ Selection (Filtering)

◦ Aggregation

◦ Join

◦ UDF Aggregation

Grep Task

 Data consists of 5.6 million100-

byte records per node

 For Hadoop, a map function

that performs a simple string

match over records stored in a

file, one per line

 Vertica, DBMS-X, HadoopDB

execute the query:

◦ SELECT * FROM Data WHERE field

LIKE ‘%XYZ%’;

 HadoopDB performs better

than Hadoop because it saves

on I/O

Selection Query

 SELECT pageURL, pageRank

FROM Rankings WHERE

pageRank > 10;

 Hadoop as usual parses the data

files and filters records

 HadoopDB pushes the execution

of selection and projection

operators in to the PostgreSQL

 Using clustered indices boosts

performance of parallel databases

and HadoopDB over Hadoop

Aggregation Query

 SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY sourceIP;

 There is a map and a reduce phase in

these queries

 HadoopDB pushes the SQL operators’

execution in to the PostGreSQL

 Using Hive’s query optimizer helps in

choosing either sorting or hashing

method to perform aggregation

Join Queries

 Hadoop supports a sort-

merge kind of algorithm

but incurs sorting

overhead

 HadoopDB assumes a

collocation of tables

partitioned on the join

attributes

UDF Aggregation Task

 HTML Documents are processed
for counting number of out-links

 In parallel DBMS a user defined
function accesses chunks of HTML
documents and parses them in
memory

 Outputs results of chunks on to a
temporary table which are later
aggregated

 Hadoop and HadoopDB executes
the same and Map and Reduce
code

Fault Tolerance and Heterogeneity

Conclusions

 HADOOPDB

 Fault Tolerance: In the presence of
node failures, Hadoop reschedules the
tasks and completes the query

 Hadoop redundantly executes tasks of
straggler nodes thus reducing effect of
slow nodes on query time

 PostgreSQL is not a column-store and
hence a drawback for HadoopDB

 In the event of data explosion and
using several hundreds of nodes
scalability comes in to picture

 PARALLEL DATABASES

 In case of node failures
unfinished queries are aborted
and query processing is restarted

 There is no way to counter the
slow node’s effect on overall
query time

 Parallel databases like Vertica
achieve much better
performance due to column
store and data compression

 Parallel databases are not
scalable

