Derandomizing pseudo-random sequences using MapReduce on Amazon Web Services

Cătălin-Alexandru Avram

<u>Overview</u>

- Introduction
- Pseudo-random number generators
- Stream ciphers
- Amazon elastic map reduce
- Our solution & Experiments
- Conclussion
- Questions

<u>Introduction</u>

- This is an experiment type project
- The subject of the experiment is Amazon's Elastic MapReduce web service
- The algorithm used for testing finds the initial seed of a given pseudo-random sequence
- Our main interests are the web service's usability, price and performance

Pseudo-random number generators

- Don't produce real randomness
- Work by applying a deterministic mathematical function to the previously generated value
- Produce sufficiently uniform distributions to be used in statistical simulations
- Used in cryptography (as inputs for stream ciphers)
- Susceptible to brute force attacks on the initial seed

Pseudo-random number generators

ARE YOU SURE THAT'S THE PROBLEM WITH RAN-DOMNESS YOU CAN NEVER BE SURE.

Stream ciphers

- "In cryptography, a stream cipher is a symmetric key cipher where plaintext bits are combined with a pseudorandom cipher bit stream (keystream).
- In a stream cipher the plaintext digits are encrypted one at a time.
- An alternative name is a state cipher, as the encryption of each digit is dependent on the current state." - Wikipedia

<u>CryptMT</u>

Mersenne twister

- Period of 2¹⁹⁹³⁷ 1
- 623 dimensional equidistribution
- 32 bit accuracy
- 624 words of working memory required in implementation
- Observing just 624 consecutive generated numbers allows one to compute the entire internal state of the generator

Amazon Elastic MapReduce

Usability, Price & Performance

- Easy to use
- Large choice of programming languages
- Libraries for common programming languages
- But poor documentation and few examples
- Choice of different interfaces: web, command line or API
- Cheap enough to use as test environment
- High initialization times -> at least 10 minutes

<u>Amazon Elastic MapReduce</u>

Continue

Amazon Elastic MapReduce

Our algorithm

- Is a brute force attack that checks all possible initial seeds
- It is given a short sequence of consecutively generated numbers as input
- N is a global program parameter representing the maximum length of a generated sequence
- The result is a list of pairs of initial seeds and positions within the generated sequence that match the input sequence

N = 10, input sequence = {59, 82, 53}

seed	0	1	2	3	4	5	6	7	8	9
129,881	6	74	59	82	53	42	78	62	20	39
190,847	94	65	76	40	78	95	12	69	46	83
213,900	49	62	52	45	17	49	59	82	53	39
428,605	68	68	38	68	94	27	74	15	59	91
543,902	43	59	82	53	90	45	12	44	13	65
873,593	1	68	42	73	94	52	26	74	67	67

Output = ?

N = 10, input sequence = {59, 82, 53}

seed	0	1	2	3	4	5	6	7	8	9
129,881	6	74	59	82	53	42	78	62	20	39
190,847	94	65	76	40	78	95	12	69	46	83
213,900	49	62	52	45	17	49	59	82	53	39
428,605	68	68	38	68	94	27	74	15	59	91
543,902	43	59	82	53	90	45	12	44	13	65
873,593	1	68	42	73	94	52	26	74	67	67

Output = {?, ?, ?}

N = 10, input sequence = {59, 82, 53}

seed	0	1	2	3	4	5	6	7	8	9
129,881		74	59	82	53	42	78	62	20	39
190,847	94	65	76	40	78	95	12	69	46	83
213,900		62			17	49	59	82	53	39
428,605	68	68	38	68	94	27	74	15	59	91
543,902		59	82	53		45	12	44	13	65
873,593	1	68	42	73	94	52	26	74	67	67

Output = {(129881, 4), ?, ?}

N = 10, input sequence = {59, 82, 53}

seed	0	1	2	3	4	5	6	7	8	9
129,881		74	59	82	53	42	78	62	20	39
190,847	94	65	76	40	78	95	12	69	46	83
213,900					17	49	59	82	53	39
428,605	68	68	38	68	94	27	74	15	59	91
543,902		59	82	53		45	12	44	13	65
873,593	1	68	42	73	94	52	26	74	67	67

Output = {(129881, 4), (213900, 8), ?}

N = 10, input sequence = {59, 82, 53}

seed	0	1	2	3	4	5	6	7	8	9
129,881		74	59	82	53	42	78	62	20	39
190,847	94	65	76	40	78	95	12	69	46	83
213,900			52		17	49	59	82	53	39
428,605	68	68	38	68	94	27	74	15	59	91
543,902		59	82	53	90	45	12	44	13	65
873,593	1	68	42	73	94	52	26	74	67	67

Output = {(129881, 4), (213900, 8), (543902, 3)}

Experiments

- MapReduce scalability (up to 20 EC2 instances)
- Different hardware setups (small/large EC2 instances)
- Day versus Night job completion time
- Different instance regions' job completion time
- Calculations performed in the mapping stage versus the reduction stage
- Generated input data versus data read from S3

<u>Conclusion</u>

- This is an experiment project studying seed identification attacks on pseudo-random number generators
- Amazon Elastic MapReduce is a simple and fast way to deploy MapReduce operations
- It's both easy and cheap to get started with Amazon Elastic MapReduce and later scale out without ever investing in an infrastructure
- Experiments will reveal the system's performance and more on its financial costs