
Google, Inc.

Presented by: Cătălin-Alexandru Avram

February 1st 2010

Fay Chang Jeffrey Dean Sanjay Ghemawat
Wilson C. Hsieh Deborah A. Wallach
Mike Burrows Tushar Chandra
Andrew Fikes Robert E. Gruber

Introduction

The Data Model

Building Blocks

Implementation

Performance Evaluation

Conclussion

Questions & Discussions

Bigtable is a distributed storage system for
managing structured data

It is extremely scalable (it can work with
petabytes worth of data on thousands of
machines)

It is actively used by over 60 Google products
with workloads ranging from batch processing to
live data serving

Bigtable is a sparse, distributed, persistent,
multidimensional sorted map

(row:string, column:string, time:int64) -> string
Rows are ordered lexicographically and

grouped together in tablets
Columns are grouped in column families
Each cell may contain multiple versions of the

same data – timestamped with either the real
time or client generated timestamps

“contents:” “anchor:politics.net”

com.cnn.politics
↓ ↓

“<html>…” ←t4 “CNN news” ←t3

“<html>…” ←t3
“<html>…” ←t5

“contents:” “anchor:cnnsi.com” “anchor:my.look.ca”

com.cnn.www
↓ ↓ ↓

“<html>…” ←t6 “CNN” ←t9 “CNN.com” ←t8

Atomic row operations
Column family level access control and garbage

collection settings

com.cnn.politics

com.cnn.www

…

…

An API is provided to handle relevant Bigtable
functions

Regular expressions for lookups

Single-row transactions are supported

Execution of client Sawzall scripts in the
server’s address space

Wrappers are provided to allow Bigtable to act
as an input source or output target to MapReduce

An SSTable provides a persistent ordered
immutable map from keys to values (strings)

Split into blocks (typically 64KB in size)

A block index is stored at the end of the SSTable

The block index is loaded into memory when
the SSTable is open

Optionally the entire SSTable may be loaded in
memory

Client

Direct client access

Client library

Master Dynamically
added or
removed

Assign tablets to tablet
servers

Detect addition/expiration
of tablet servers

Tablet server load balancing
GFS file garbage collection
Schema changes

The root tablet is never split
All metadata tablets are stored in memory
128 MB / tablet is sufficient to address 234 tablets
The client library caches tablet location

Tablet servers each acquire a lock on a Chubby file,
allowing the master to keep track of them

If the file no longer exists the server kills itself

The master assigns tablets to tablet servers (the list of
all tablets is kept in the METADATA table)

The master handles tablet
creation, deletion and merging

The tablet servers handle tablet
splitting

When tablets become too large (typically 100-200
MB, tablet servers will split the tablet into 2 parts

The process involves creating a new tablet and
committing the operation by adding the new
information in the METADATA table

The master is notified after the commit

If the notification is lost, the master will be informed
when it asks a tablet server to load the initial tablet ->
the tablet server will only see part of the tablet it was
asked to load when querying the METADATA table

A tablet comprises of a list of immutable SSTables
stored under GFS

Recently committed operations are stored in memory
in so called memtables

Commit logs are kept to ensure recovery from failure
“redo points” stored in the METADATA table are just

pointers to entries in these commit logs
Memtables are compacted into SSTables once they

reach a certain size (minor compaction)
Multiple SSTables are compacted together to speed

up read operations (major/merging compaction)

Write Op

Read Opmemtable

Memory

GFS

tablet log

SSTable Files

Locality groups (for column families)

Compression (block level)

Caching (Scan Cache and Block Cache)

Bloom filters

Tablet server level commit-log

Minor compactions before tablet movement

Exploiting immutability

Experiment
Number of Tablet Servers

1 50 250 500
Random reads 1,212 593 479 241
Random reads (mem) 10,811 8,511 8,000 6,250
Random writes 8,850 3,745 3,425 2,000
Sequential reads 4,425 2,463 2,625 2,469
Sequential writes 8,547 3,623 2,451 1,905
Scans 15,385 10,526 9,524 7,843

-

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

0 100 200 300 400 500

Random
reads
Random
reads (mem)
Random
writes
Sequential
reads
Sequential
writes
Scans

Bigtable provides an unconventional
alternative to distributed databases

It offers great scalability and performance

Users have increased flexibility, but intelligent
schema designs are required in order to maintain
performance at high levels

It plays a pivotal role in Google’s infrastructure,
being used by over 60 deployed products

How big of a problem is the lack of general
transaction support ?

Is the performance of reading operations too low
(especially if the data accessed is relatively new) ?

The system performs well when faced with
Google’s application needs; will it fare as well in
other types of applications ?

Comparison with standard distributed database
systems.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

