
Distributed Dual Iterative Pattern Relation Expansion
(D-DIPRE)

Anup Chalamalla Mina Farid

Outline

• DIPRE

• Introduction

• Problem Definition

• Algorithm

• Distributed DIPRE

• Basic idea

• Implementing different modules

• Data flow

• Iterative MapReduce

• Conclusions and Future Work

3/22/20102 Chalamala & Farid

DIPRE- Introduction and Problem Definition

 Large amount of information on the Web

 Extract structured information from unstructured

documents

 D large set of documents (WWW)

 Looking for occurrences of R

 R is a binary relation, e.g., (author, title) , (person_name,

email)

3/22/20103 Chalamala & Farid

DIPRE- Algorithm

1. Feed some seeds

2. Find Occurrences

3. Generate Patterns

4. Find patterns matches

5. If enough tuples are found exit, else repeat 2

3/22/20104 Chalamala & Farid

DIPRE- Algorithm (cont’d)

1. Feed some seeds

2. Find Occurrences

3. Generate Patterns

4. Find patterns matches

5. If enough tuples are found exit, else repeat 2

3/22/20105 Chalamala & Farid

DIPRE- Algorithm (cont’d)

1. Feed some seeds

Provide some sample instances of the relation

For example,

Author Book Title

Isaac Asimov The Robots of Dawn

David Brin Startide Rising

James Gleick Chaos: Making a New Science

Charles Dickens Great Expectations

William Shakespeare The Comedy of Errors
3/22/20106 Chalamala & Farid

DIPRE- Algorithm (cont’d)

1. Feed some seeds

2. Find Occurrences

3. Generate Patterns

4. Find patterns matches

5. If enough tuples are found exit, else repeat 2

3/22/20107 Chalamala & Farid

DIPRE- Algorithm (cont’d)

2. Find Occurrences of Seeds

• Occurrence Structure: (prefix, author, middle, book, suffix, order, url)

• Example:

o look for (Charles Dickens, Great Expectations) in the domain www.books.com

www.books.com/TopRated

“The famous writer Charles Dickens wrote Great Expectations book”

o Extracted Occurrence:

(The famous writer, Charles Dickens, wrote, Great Expectations, book, true, www.books.com/TopRated)

• Repeat for all seeds in all documents

• Result: A set of occurrences of seeds in the documents

3/22/20108 Chalamala & Farid

DIPRE- Algorithm (cont’d)

1. Feed some seeds

2. Find Occurrences

3. Generate Patterns

4. Find patterns matches

5. If enough tuples are found exit, else repeat 2

3/22/20109 Chalamala & Farid

DIPRE- Algorithm (cont’d)

3. Generate Patterns

Pattern Structure: (order, urlprefix, prefix, middle, suffix)

• Group occurrences having similar “order” and “middle”

(The famous writer, Charles Dickens, wrote, Great Expectations, book, true, www.books.com/TopRated)

(The great writer, Nicholas Sparks, wrote, The Last Song , book, true, www.books.com/BestSellers)

Generate a pattern as general as possible to match all occurrences.

writer .*? wrote .*? book

Prefix = writer Suffix = book order = true

Middle = wrote urlprefix = www.books.com

3/22/201010 Chalamala & Farid

DIPRE- Algorithm (cont’d)

1. Feed some seeds

2. Find Occurrences

3. Generate Patterns

4. Find patterns matches

5. If enough tuples are found exit, else repeat 2

3/22/201011 Chalamala & Farid

DIPRE- Algorithm (cont’d)

4. Find patterns matches and extract relations

writer .*? wrote .*? book

......The writer Mario Puzo wrote The Godfather book.....

Extract relation (Mario Puzo, The Godfather)

3/22/201012 Chalamala & Farid

DIPRE- Algorithm (cont’d)

5. If enough tuples are found exit, else repeat

repeat again, having new tuples as seeds

New Seed: (Mario Puzo, The Godfather)

.... the book The Godfather was written by Mario Puzo....

Prefix Author Middle Book Suffix Order URL

Occurrence: (the book, Mario Puzo, was written by, The Godfather, NULL, false, www.library.com)

order urlprefix prefix middle suffix

Pattern: (False, library.com, The book, was written by, NULL)

the book .*? was written by .*?

Match patterns

3/22/201013 Chalamala & Farid

http://www.library.com/

DIPRE- End Result

Output:

1. Tuples of Relation R extracted (set of authors and
book titles)

2. List of Patterns to extract books

 Patterns are used to extract relations from new
documents added to the database

3/22/201014 Chalamala & Farid

Distributed DIPRE System

 {Instances of a Relation} D {Occurrences in the

documents} {RegEx. Patterns} D {New instances}

 All documents and seed instances reside on Hadoop’s HDFS

 Hadoop’s MapReduce framework is used to process instances

and patterns over documents local to each map and reduce

worker machines on HDFS

 New instances and patterns generated in each iteration are

stored on HDFS

Modules in the implementation

 Document Loading – Hadoop loads the documents’ corpus and places the
documents on HDFS on the name node and data nodes in the cluster.

 Occurrence Extractor – Finding occurrences of seed instances in the documents
and extracting their context {prefix, suffix, middle, order}

 Map function:: [(key=docID, value=documentText) R (key={middle, order}, value=Occurrence)]

 Pattern Extractor – Extracts patterns on to HDFS from re-grouped occurrences

 Reduce function:: [(key={middle, order}, value=List<Occurrence>) List<Patterns>]

 Pattern Matcher — Match extracted patterns against documents and output more
instances which are again fed as seeds to the occurrence extractor

 Map function:: [(key=docID, value=documentText) P List<R>]

 Iteration Controller – Stops the iterative process of pattern-relation extraction
when it finds that number of new seed instances generated in an iteration is very
small.

Data flow

Documents

SEED INSTANCES

Occurrence Extractor

(Map function)

Hash

Partitione

r

Occu-

rrence

PARTITIONED

OCCURRENCES

Input: (Key=<middle,

order>, List<Values>=

List<Occurrences>)

Pattern Extractor

(Reduce Function)

Documents

Pattern Matcher

(Map Function)

PATTERNS

ITERATION CONTROLLER

NEW

INSTANCES

OCCURRENCES

PATTERNS

HDFS

GenPattern

s()

GenOcc

urrence

s()

Reduce

Status of Implementation

 Implemented the DIPRE system with map and reduce

functions for various stages in the processing

 Need to configure Hadoop to run the map reduce jobs

iteratively

 Need to configure Hadoop to run on Amazon EC2 and

produce scalability results

Iterative Map Reduce

 Additional Combine phase to collect all the final output

instances of an iteration

 Distinction on static and variable data

 Remove or rename the instances file and load new

instances for next iteration

 Hadoop supports iteratively running Map Reduce tasks

Source: http://www.iterativemapreduce.org/

Conclusion

 A distributed information extraction system, which is logically
same as DIPRE

 Can extract instances of an arbitrary relation from documents of any
arbitrary domain

 Experiments: Scalability results on

 Number of nodes used (vs) Time taken

 Number of documents processed (vs) Time taken,

 Systems Compared: DIPRE, D-DIPRE

Future Work

 Use inverted index to process documents for generating

occurrences and patterns

 Katta: Distributed Lucene system which can create a

distributed index on Hadoop

References

 Brin, Sergey (1999) Extracting Patterns and Relations from

the World Wide Web. Technical Report. Stanford InfoLab.

(Publication Note: WebDB Workshop at EDBT'98)

 S. Khaitan, G. Ramakrishnan, S. Joshi, Anup K. Chalamalla:

RAD: A Scalable Framework for Annotator Development. ICDE

2008.

