
22 March 2010 1

Join and Update Processing in
Distributed RDF

CS 848 - Advanced Topics in Databases: Cloud Data
Management

Project Presentation - MatRDF

 by
Güneş Aluç

22 March 2010 2

Resource Description Framework
(RDF)

● RDF is a World Wide Web Consortium (W3C) standard, with which:
– the semantics of (web) resources can be described in a machine-processable language,

– (web) resources whose schemas are (i) different or (ii) not well-defined in advance can be
integrated

22 March 2010 3

RDF Triples

Subject Predicate Object
uwaterloo:cs848 dc:type yago:course

uwaterloo:cs848 lubm:instructor foaf:KSalem

uwaterloo:cs848 hasCapacity “30”

foaf:KSalem foaf:family_name “Salem”

foaf:KSalem dblp:hasPublication bNode1

bNode1

URI

literal

Blank
Node

URI

Blank
Node

URI

22 March 2010 4

Queries on RDF Triples

● SPARQL (SPARQL Protocol and RDF Query Language) is the W3C
recommended query language for RDF:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ...

SELECT ?x

WHERE {

?x dc:type yago:course .
?x ?y foaf:KSalem .

}

Subject Predicate Object
uwaterloo:cs848 dc:type yago:course

uwaterloo:cs848 lubm:instructor foaf:KSalem

http://purl.org/dc/elements/1.1/

22 March 2010 5

Join Types

22 March 2010 6

Triplestores

● As a response to the need to store and efficiently process very large
sets of semantic data, RDF has received significant attention from the
database community
– http://challenge.semanticweb.org/ → billion triples!

● A triplestore is a DBMS that supports storage and querying (e.g.
SPARQL) of RDF triples
– Non-distributed approaches:

● Challenge: queries involve multiple star-joins and long-path joins
– Distributed approaches:

● Challenge: joins require data transfer between multiple nodes
– Common:

● Challenge: updates are almost always ignored or assumed to be batch
operations

http://challenge.semanticweb.org/

22 March 2010 7

Non-distributed Triplestores

(+) easy to maintain
(-) necessitates self-joins

[4, 7]

(+) speeds up joins
if there is a schema

(-) NULL values

[23]

(+) fast on column-stores
(-) queries involving

joins on unbound predicates
are problematic

[1]

22 March 2010 8

Non-distributed Triplestores
(+) equally generous to all

query types
(-) aggressive space utilization

(compression?)

[22, 16, 17]

22 March 2010 9

Distributed Triplestores
● RDFPeers [5, 15] is a triplestore

that uses a P2P infrastructure,
namely the multi-attribute
addressable network (MAAN), to
distribute the triples among the
peers.

● Each triple is stored 3 times, on the
node hashed by its subject,
predicate and object

● Problem:
● even matching a simple atomic triple

pattern (e.g. s
i
, ?p, ?o) requires log(N)

hops

22 March 2010 10

MatRDF – Partitioning Scheme

22 March 2010 11

MatRDF – Inserts (and Updates)

The cost of update
is reduced by a

factor of 6, since
each permutation

of the triple is
processed in

parallel

22 March 2010 12

MatRDF – Atomic Triple Patterns

Given that the
queries involve
atomic triple
patterns only,
they can be
answered

in isolation,
concurrently

22 March 2010 13

MatRDF – Star Joins & Long-Path Joins

On each node,
the triples

involved in
possible

join paths
(S-S, S-O, O-O)

are stored in
additional tables

Now the following SPARQL query
can be answered without data transfer
between nodes:

SELECT ?a ?b
WHERE
{

A B ?z .
?z ?a ?b .

}

22 March 2010 14

MatRDF- Selecting What to Materialize

● In the worst case, the primary and secondary tables are replicated over each
horizontal partition → not scalable!!! We need to restrict what can be stored
in the primary and secondary tables:

● Strategy 1: On each node randomly select a subset of all possible S-S / S-O / O-O join
paths

● Strategy 2: Dynamically populate the primary and secondary tables based on a
replacement policy

● Strategy 3: Incorporate the vertex centrality (in particular degree centrality) of RDF nodes to
approximate how valuable it is to store the join paths involving that node

22 March 2010 15

MatRDF - Horizontal Partitioning Scheme

● Strategy 1: Split lexicographically
● (+) Easy to maintain
● (-) Hot-spots?
● (-) Inter-node data transfer?

● Strategy 2: Split based on graph

locality
● (+) Inter-node data transfer reduced
● (-) Difficult to maintain

22 March 2010 16

Thank you...
Questions?

22 March 2010 17

References

22 March 2010 18

References

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

