
08 March 2010 1

SCOPE: Easy and Efficient Parallel 
Processing of Massive Data Sets

Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., 
Weaver, S., and Zhou, J. @ {Microsoft Corporation}

PVLDB, 2008

Presented by: Güneş Aluç



08 March 2010 2

Problem
(a)accumulation of massive data sets → search logs, web content collected by 

crawlers, ad-click streams, etc.

necessitates the development of cost-efficient distributed storage solutions: GFS, 
BigTable, … (i.e. exploit large clusters of commodity hardware)

(b)business value in analyzing massive data sets → better ad-placement, 
improved service (e.g. web search), data-mining opportunities, fraudulent 
activity detection, etc.

necessitates the development of distributed computing frameworks: MapReduce, 
Hadoop, ...

(c) the need to describe and execute ad-hoc large-scale data analysis tasks → 
in-house experiments

necessitates the development of high-level distributed dataflow languages: 
PigLatin, Dryad, SCOPE



08 March 2010 3

Focus

● a declarative and extensible scripting language: SCOPE → “(S)tructured 
(C)omputations (O)ptimized for (P)arallel (E)xecution”

– Declarative: users describe large-scale data analysis tasks as a flow of data 
transformations, w/o worrying about how they are parallelized on the 
underlying platform

– Extensible: user-defined functions and operators

– Structured Computations: data transformations consume and produce “rowsets” that 
conform to a schema

– Optimized for Parallel Execution: ??? plan optimization not explicitly discussed in 
this paper



08 March 2010 4

Yet Another High-Level Language 
for Large-Scale Data Analysis? 

● A hybrid scripting language supporting not only user-defined map-reduce-
merge operations, but also SQL-flavored constructs to define large-scale 
data analysis tasks

● How about PigLatin?

– Somewhere in between SQL and MapReduce

– Has support for a nested data model



08 March 2010 5

Overview

COSMOS
files

regular
files

external
storage

data 
source(s)

EX
TR

AC
T

built-in/
custom 

extractors

schema
IN_1

schema
IN_K

.

.

.

schema
OUT_1

rowset(s)

{int/long/double/float/
dateTime/string/bool/...}

dataflow

δ – π −

PROCESS

REDUCE   

COMBINE

user-defined 
functions

user-defined 
operators O

U
TP

U
T

built-in/
custom 

outputters

COSMOS
files

regular
files

external
storage

data 
sink(s)

SCOPE Scripts

COSMOS Execution Environment



08 March 2010 6

Background on Cosmos
● Cosmos Storage System: a distributed 

storage platform, sharing ~ to GFS: 

– high availability, reliability, 
scalability and performance

– compression/decompression

– only supports append-style 
updates

● Cosmos Execution Environment: provides a 
high-level programming interface to 
execute parallel programs expressed as 
dataflow graphs, ~ to MapReduce:

– parallelism, fault tolerance, 
data partitioning and 
resource management



08 March 2010 7

SCOPE Scripting Language
● At its core, SCOPE provides SQL-

flavored constructs to describe 
large-scale data analysis tasks

● The language can be extended with 
user defined functions and 
operators (i.e. expressed in C#)

– Why? literally speaking: “Its 
resemblance to SQL 
reduces the learning curve 
for users.”

– Why? personal opinion: easier 
to translate extensible 
SCOPE scripts into Dryad 
Runtime DAGs 

user-defined 
operators

user-defined 
functionsSELECT

FROM
[WHERE]
[GROUP BY]
[HAVING]
[ORDER BY]

JOIN

SELECT

PROJECT

SOURCE SOURCE

user-defined 
functions

user-defined 
operators

Dryad Runtime DAG(s)



08 March 2010 8

SCOPE Scripting Language
● SCOPE scripts consist of a sequence of commands. Sometimes, it is possible 

to break a single SCOPE command into a series of smaller commands which 
are tied together by named inputs (i.e. placeholders or variables):

The dataflow is essentially made 
up of a sequence of commands 

each of which consumes a set of 
rowsets and produces a single 

rowset as output



08 March 2010 9

Input & Output
(1) EXTRACT column[:<type>] [, …] 

(2) FROM < input_stream(s) > 

(3) USING <Extractor> [(args)]

(4) [HAVING <predicate>]

(1) schema of the rowset to be produced

(2) i.e. Cosmos files, regular files, external 
storage

(3) built-in or custom extractor

(4) [optional] filter

COSMOS
files

regular
files

external
storage

data 
source(s)

E
X

TR
AC

T

built-in/
custom 

extractors

schema
IN_1

schema
IN_K

.

.

.

rowset(s)



08 March 2010 10

Input & Output
(1) OUTPUT [<input> 

(2) [PRESORT column 

[ASC | DESC] [, …]]] 

(3) TO <output_stream> 

(4) [USING <Outputter> [(args)]]

(1) rowset to export

(2) [optional] provide sort-order by columns

(3) i.e. Cosmos files, regular files, external 
storage

(4) built-in or custom outputter

schema
OUT_1

schema
OUT_K

.

.

.

rowset(s)

O
U

TP
U

T

built-in/
custom 

outputters

COSMOS
files

regular
files

external
storage

data 
sink(s)



08 March 2010 11

Select & Join



08 March 2010 12

Select & Join



08 March 2010 13

Subqueries as Outer Joins
● Let's work the following example 

out:

Question: Do both approaches 
share the same cost?

R
a

R
b

R
c

6 50 Alice
3 75 Bob
2 110 Clarice

S
a

S
c

5 Bob
15 Bob
25 Clarice



08 March 2010 14

Expressions and Functions
● Where are these scalar expressions and functions used?

– SELECT … select_expression …

– [ WHERE <predicate> ]

– [ HAVING <predicate> ]



08 March 2010 15

So far ...
● We have studied:

– the syntax of SCOPE

– how its SQL-flavored constructs can be extended with user defined expressions and 
functions

● However, we have not yet really discussed:

(i) how the tasks described by SCOPE scripts would benefit from parallelization

(ii) if we were to omit user defined expressions and functions, what value-added 
features would this system bring on top of traditional parallel database solutions

Well, intuitively, any aggregation operation (e.g. COUNT, SUM, AVG, 
etc. will benefit from parallelization. In this regard, we may assume

that SCOPE compiler & optimizer will take care of it.

Well, intuitively, any aggregation operation (e.g. COUNT, SUM, AVG, 
etc. will benefit from parallelization. In this regard, we may assume

that SCOPE compiler & optimizer will take care of it.



08 March 2010 16

Process – Reduce – Combine
● Analogous to the map-reduce-merge model1

● Let's work with the example in [1], Section 3.1

(1) Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. 2007. Map-reduce-merge: simplified relational data processing on large clusters. In Proceedings of the 
2007 ACM SIGMOD international Conference on Management of Data. SIGMOD '07. 



08 March 2010 17

Process – Reduce – Combine



08 March 2010 18

Process – Reduce – Combine



08 March 2010 19

So far...

Extract ...

Select ...

Process ...

Reduce ...

Combine ...

Select ...

Process ...

Reduce ...

Combine ...

Output ...



08 March 2010 20

SCOPE Compilation & Optimization
● Compilation: SCOPE script → internal 

parse tree → [optimization] → Dryad DAG 
execution plan

● “SCOPE compiler combines adjacent 
vertices with physical operators that can be 
easily pipelined into (super) vertices (1:1)”

● Optimization (traditional sense):

– remove unnecessary columns

– pushing down selection predicates

– Pre-aggregation, etc.

● Optimization (distributed):

– when and what to partition

n:1

n:m

n:1

1:1



08 March 2010 21

SCOPE Compilation & Optimization

SELECT query, COUNT() AS count 

FROM "search.log" USING LogExtractor 

GROUP BY query HAVING count > 1000

ORDER BY count DESC; 

OUTPUT TO "qcount.result";

The interesting part is that, even though
the script does not explicitly contain any
PROCESS-REDUCE-MERGE 
commands, a distributed plan is 
produced.



08 March 2010 22

SCOPE Compilation & Optimization
● Run-time optimization:

– make optimization decisions based on network topology (~static)

● racks of commodity machines
● per-rack switch
● common switch

– reduce workload on common switch

– why not as well optimize based on how the data is actually stored in the Cosmos 
Storage System?



08 March 2010 23

Experimental Results
● TPC-H / Q

1
, Q

2

These experiments are somewhat amateur:
- 2 of the 22 queries in TPC-H
- only 3 clusters
- only 3 different sized dBs
- performance experiment → not linear in log scale
- how about performance of Map-Reduce-Merge tasks?



08 March 2010 24

Discussion
● (Q1) How exactly is SCOPE different from Pig-Latin?

● (Q2) In SCOPE, queries can be written in a single SQL-block or in a pipelined sequence of 
commands. What advantages does each have? If we were to combine SQL-flavored commands 
with map-reduce-merge jobs, don't we essentially have to stick with the second option? Would 
it make a difference in terms of optimization?

● (Q3) SCOPE is built on top of the Dryad framework in which execution plans are expressed as 
directed-acyclic graphs. Is this restrictive? Can we actually benefit from cycles?

● (Q4) Plan optimization is quite vaguely discussed in this paper. To the best of our knowledge, 
the authors have not yet published a follow-up work, either. Do you believe this area is subject 
to improvement? Do you think optimization strategies that exploit the run-time distribution of 
data need to be developed?

● (Q5) What difficulties do we face in trying to compile user-defined functions. into parallel 
execution plans? i.e. we know the semantics of SUM, COUNT, etc., but this is not true for user 
defined functions.



08 March 2010 25

Thank you...

Any questions?



08 March 2010 26

Additional Slides



08 March 2010 27

Additional Slides



08 March 2010 28

Additional Slides


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

