SCOPE: Easy and Efficient Parallel
 Processing of Massive Data Sets

Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D.,
Weaver, S., and Zhou, J. @ {Microsoft Corporation}

PVLDB, 2008

Presented by: Gunes Aluc

08 March 2010 1

‘———-——_—_———_J.

Problem

(a) accumulation of massive data sets — search logs, web content collected by
crawlers, ad-click streams, etc.

necessitates the development of cost-efficient distributed storage solutions: GFS,
BigTable, ... (i.e. exploit large clusters of commodity hardware)

(b) business value 1n analyzing massive data sets — better ad-placement,
improved service (e.g. web search), data-mining opportunities, fraudulent
activity detection, etc.

necessitates the development of distributed computing frameworks: MapReduce,
Hadoop, ...

(c) the need to describe and execute ad-hoc large-scale data analysis tasks —
in-house experiments

necessitates the development of high-level distributed dataflow languages:
PigLatin, Dryad, SCOPE

08 March 2010

Focus

* adeclarative and extensible scripting language: SCOPE — *“(S)tructured
(C)omputations (O)ptimized for (P)arallel (E)xecution”

— Declarative: users describe large-scale data analysis tasks as a flow of data
transformations, w/o worrying about how they are parallelized on the
underlying platform

Extensible: user-defined functions and operators

Structured Computations: data transformations consume and produce “rowsets” that
conform to a schema

Optimized for Parallel Execution: ??? plan optimization not explicitly discussed in
this paper

08 March 2010

Yet Another High-Level Language
for Large-Scale Data Analysis?

* A hybrid scripting language supporting not only user-defined map-reduce-
merge operations, but also SQL-flavored constructs to define large-scale
data analysis tasks

* How about PiglLatin?

- Somewhere in between SQL and MapReduce

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>10°;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);

— Has support for a nested data model

€ ‘lakers’, 1 .
t = (allce’}{ ((‘iPod’, 2)) },[age’ —»20])

08 March 2010 4

‘—_;—-_-—_—_J_

Overview

SCOPE Scripts

{int/long/double/float/
COSMOS C) . . dateTime/string/bool/...} . D i |COSMOS
files | e T S R ¥ 3 3 files i
i i schema v : : -
H: g .] N user-defined§§ L —
regular |||\ || schema,, functions .| . |- | SIS
fles |1l |2 AT e e B R L |5 | files |V
F o ¢ o ! 33 o 3 £
e SR Lo ; : ' user-defined | = : St Y
L SchemalN K REDUCE Operators ‘ (@)
external |: § R COMBINE § ' | external
sorage |) o o (TN | torage
data built-in/ rowset(s) dataflow built-in/ data
source(s) | custom . custom sink(s)
extractors outputters

COSMOS Execution Environment

08 March 2010

\———_"_

Background on Cosmos

Cosmos Storage System: a distributed
storage platform, sharing ~ to GFS:

— high availability, reliability,
scalability and performance

— compression/decompression

— only supports append-style
updates

Cosmos Execution Environment: provides a
high-level programming interface to
execute parallel programs expressed as
dataflow graphs, ~ to MapReduce:

— parallelism, fault tolerance,
data partitioning and
resource management

08 March 2010

SCOPE Script

SCOPE Compiler

4
SCOPE Runtime

Cosmos Execution Environment

Cosmos Storage System

il

SCOPE Scripting Language

* Atits core, SCOPE provides SQL- . user.defined

flavored constructs to describe FROM T{Oge

. [WHERE] | § ‘ |

large-scale data analysis tasks TEFOUT 577 PR e

[HAVING] |

3 [ORDER BY] | operators |

 The language can be extendedwith = . [| - ..
user defined functions and

operators (i.c. expressed in C#) o D e S

SELECT user-defined |

. functions

— Why? literally speaking: “Its
resemblance to SQL
reduces the learning curve

iuser-defined

.| operators
for users.” | SOURCE | [SOURCE |- ‘
— Why? personal opinion: easier d |
to translate extensible Dryad Runtime DAG(s)
SCOPE scripts into Dryad
Runtime DAGs
08 March 2010 7

-——_—_J'_

SCOPE Scripting Language

* SCOPE scripts consist of a sequence of commands. Sometimes, it is possible
to break a single SCOPE command into a series of smaller commands which
are tied together by named inputs (i.e. placeholders or variables):

SELECT guery, COUNT(*) AS count e = EXTRACT query
FROM "search.log" USING LogExtractor FROM “search.log™
GROUP BY dquery USING LogExtractor;
HAVING count > 1000 1 = SELECT cue COUNT (* count
ORDER BY count DESC; sl = SELECT query, COUNT(*) as coun
FEOM =
CUTPUT TC "gcount.result"™; GROUP BY query;
. . sZ2 = SELECT query, count
The dataflow is essentially made FROM sl
up of a sequence of commands v WHERE count > 1000;
each of which consumes a set of s3 = SELECT query, count
rowsets and produces a single FROM s2
rowset as output ORDER BY count DESC;

OUTBUT s3 TO “gcount.result";

08 March 2010

Input & Output

COSMOS
fles |1
\/
regular
files |
\/

schema,N_K
external | ;

data built-in/ | rowset(s)
source(s) | custom
extractors

i schema

IN_1

EXTRACT U U

08 March 2010

(1) EXTRACT column[:<type>] [, ...]
(2) FROM < input_stream(s) >

(3) USING <Extractor> [(args)]

(4) [HAVING <predicate>]

(1) schema of the rowset to be produced

(2) 1.e. Cosmos files, regular files, external
storage

(3) built-in or custom extractor

(4) [optional] filter

Input & Output

(1) OUTPUT [<input>
(2) [PRESORT column

D COSMOS
schemaOUU%D% \f"}f [ASC 1 DESC] [,]]]
——| (3) TO <output_stream>
s el 3
_ E e (4) [USING <Outputter> [(args)]]
schema OUTK§ O
. external
C) storage
rowset(s) built-in/ Aata (1) rowset to export
. custom sink(s)
Pl iy (2) [optional] provide sort-order by columns

(3) 1.e. Cosmos files, regular files, external
storage

(4) built-in or custom outputter

08 March 2010

10

Select & Join

SELECT l.e. to rename
[DISTINCT] columns in the
[TOP count] intermediate
select_expression [AS <name>][, .] rowset(s) produced

Aggregation functions: COUNT, COUNTIF, MIN, MAX, SUM, AVG, STDEV, VAR, FIRST,
LAST

FROM :
<input stream(s)= USING <extractor= | : either an
; intermediate rowset
<input= INNER JOIN <input= [ON <equijoin=] [, ..] isusedoritis
LEFT OUTER EXTRACTED from
RIGHT OUTER data source(s)

FULL OUTER

Multiple joins are allowed; equijoins have higher priority.

Employees Departments

Emp. ID |Name Emp. ID Department inner join?

1 Alice 1 Sales left outer join?
5 Bob etc.

08 March 2010 11

Select & Join

[WHERE <predicate>]
[GROUP BY <grouping_columns> [, ...]]
[HAVING <predicate>]

[ORDER BY <select_list_item> [ASC | DESC] [, ...]1

Subqueries are not allowed! However, the same functionality can be achieved by using
OUTER joins within a sequence of commands

08 March 2010 12

Subqueries as Quter Joins

SELECT Ra, Rb * Let's work the following example
FROM R out:
WHERE Rb < 100
IND (Ra > 5 OR EXISTS(SELECT * FROM 2 R, R, R,
WHERE Sa < 20 6 50 Alice
END Sc = Rc)) 3 75 Bob
2 110 Clarice

50 = SELECT DISTINCT Sc FROM S WHERE Sa < 20; S S

Ml = SELECT Ra, Rb, Rc FROM R WHERE Rb ¢ 100; a c
M2 = SELECT Ra, Rb, Re, Sc 5 Bob
FROM ML LEFT OUTER JOIN 8Q ON Rc == S¢; 15 Bob
0 = SELECT Ra, Rb FROM M2 25 Clarice

WHERE Ra > 5 OR Re != 8¢;

Question: Do both approaches

08 March 2010 share the same cost? 13

—-—_J_

Expressions and Functions

* Where are these scalar expressions and functions used?

- SELECT ... select expression ...
- [WHERE <predicate> |
— [HAVING <predicate> |

El = SELECT Z&+C AS ac, B.Trim() 28 El
FEOM E
WHERE StringOccurs (C, “xyz") > 2

08 March 2010 14

So far ...

* We have studied:

— the syntax of SCOPE

- how its SQL-flavored constructs can be extended with user defined expressions and
functions

* However, we have not yet really discussed:

(1) how the tasks described by SCOPE scripts would benefit from parallelization

Well, intuitively, any aggregation operation (e.g. COUNT, SUM, AVG,
etc. will benefit from parallelization. In this regard, we may assume
that SCOPE compiler & optimizer will take care of it.

(1) if we were to omit user defined expressions and functions, what value-added
features would this system bring on top of traditional parallel database solutions

08 March 2010 15

-——_—_J'_

Process — Reduce — Combine

 Analogous to the map-reduce-merge model'

venue far

parallelizatio

for-each
row

PROCESS

PROCESS [<input>]

USING <Processor> [(args)]
[PRODUCE column [, ...]]
[HAVING <predicate>]

for-each row produce
0, 1, or multiple rows

* Let's work with the example 1n [1], Section 3.1
4% |[emp-id jemp- |emp-info: bonus
g info:
e dept-id
1 B innovation award ($100)
1 B hard worker award ($50)
2 A NULL (30)
3 A high-performer ($150)
3 A innovation award ($100)
1.:3 emp-id | dept-id |Bonus ($)
5 1 B 100
1 B 50
2 A 0
3 A 150
3 A 100
08 March 2010

(1

Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. 2007. Map-reduce-merge: simplified relational data processing on large clusters. In Proceedings of the

2007 ACM SIGMOD international Conference on Management of Data. SIGMOD '07.

16

Process — Reduce — Combine

% ||emp-id |dept-id [Bonus ($)
g 1 B 100
1 B 50
Jme o group
2 A 0 ON emp-id
3 A 150
3 A 100
REDUCE
REDUCE [<input=
[PRESORT column [ASC|DESC] [, ..]Il -«

OM grouping_column [, ..]
USING <Reducer> [(args)]
[PRODUCE column [, ..]] [HAVING <predicate>]

for-each (grouped) rowset produce
0, 1, or multiple rows

% ||emp-id |dept-id |Bonus Sum ($)
g 1 B 150

2 A 0

3 A 250

08 March 2010 17

—-—_J_

Process — Reduce — Combine

presort dept-id, emp-id presort dept-id
emp-id | dept-id | bonus-sum || ¢ © ||dept-id |bonus adjustment
= = L
2 A 0 z 3 A 0.95
3 A 250 B 1.15
1 B 150
COMBINE
COMBINE
<input1= [AS <alias1=] [PRESORT ..]
WITH <input2= [AS <alias2=] [PRESORT ..]
I ——————

ON =equality_predicate=
USING =Combiner= [(args)]
PRODUCE column [, ..]

[HAVING <expression: |
; venue for parallelization:
*g emp-id | bonus))
2l 0 (1) requirement: inputs are
o grouped, and only
3 2375 rows from matching
groups can be
1 172.5 combined
08 March 2010 18

—-—_J_

So far...

Extract ...

Process ... Process ...

Reduce ... = Reduce ... =

Combine ... ¢ | Combine ...

Select ...

08 March 2010 19

‘—_;—-_-—_—_J_

SCOPE Compilation & Optimization

Search.log
—— — — —
e Compilation: SCOPE script — internal Stages E g ﬁ § f j f j
parse tree — [optimization] — Dryad DAG g) I L I . I I
execution plan 1 LExtrar.:t | e LExtract | (Extracﬂ (Extracﬂ
« “SCOPE compiler combines adjacent r\Pa*,.ﬁ:“/ r\P;.ﬁ;,/"\
. : X 2
vertices with physical operators that can be Agg Agg
easily pipelined into (super) vertices (1:1)” 3 Distribute Distribute
n:m
* Optimization (traditional sense): p— P
4 | Full Agg Full Agg
i remove unnecessary columns 5 | Filter Filter

—~ pushing down selection predicates 6

- Pre-aggregation, etc.

* Optimization (distributed): 7

- when and what to partition

08 March 2010 20

——J_

SCOPE Compilation & Optimization

T B s
Stages I I I I

1 [Extract\| (Extracﬂ (Extracﬂ (Extracﬂ

SELECT query, COUNT() AS count N N
2

(" Partial " Partial)
Agg
Distribute

Agg
Distribute

FROM "search.log" USING LogExtractor 3

GROUP BY query HAVING count > 1000

4 [FulAgg " Full Agg
ORDER BY count DESC; : -
5 | Filter Filter
OUTPUT TO "qcount.result"; 6
The interesting part is that, even though 7
the script does not explicitly contain any 8

PROCESS-REDUCE-MERGE
commands, a distributed plan is
produced.

08 March 2010 21

——J_

SCOPE Compilation & Optimization

* Run-time optimization:

— make optimization decisions based on network topology (~static)

* racks of commodity machines
* per-rack switch
* common switch

— reduce workload on common switch

— why not as well optimize based on how the data is actually stored in the Cosmos
Storage System?

08 March 2010 22

‘—_;—-—_——__—-—J_

Experimental Results

These experiments are somewhat amateur:
- 2 of the 22 queries in TPC-H
. - only 3 clusters
. TPC H / Ql’ Q2 - only 3 different sized dBs
- performance experiment — not linear in log scale
- how about performance of Map-Reduce-Merge tasks?

1 100

0.8
2 o
- bt
o m
e -3
g 3
E S 10
g 04 g
el
; :
a a

0.2 1

20 40 80 1068 100GB
Cluster Size (Machines) TPC-H Database Size
+TPC-HQ1 =TPC-HQ2 +TPC-HQl1 ®TPC-HQ2

08 March 2010

178

23

Discussion

* (Q1) How exactly is SCOPE different from Pig-Latin?

* (Q2) In SCOPE, queries can be written in a single SQL-block or in a pipelined sequence of
commands. What advantages does each have? If we were to combine SQL-flavored commands
with map-reduce-merge jobs, don't we essentially have to stick with the second option? Would
it make a difference in terms of optimization?

* (Q3) SCOPE is built on top of the Dryad framework in which execution plans are expressed as
directed-acyclic graphs. Is this restrictive? Can we actually benefit from cycles?

* (Q4) Plan optimization is quite vaguely discussed in this paper. To the best of our knowledge,
the authors have not yet published a follow-up work, either. Do you believe this area is subject
to improvement? Do you think optimization strategies that exploit the run-time distribution of
data need to be developed?

* (QS5) What difficulties do we face in trying to compile user-defined functions. into parallel
execution plans? i.e. we know the semantics of SUM, COUNT, etc., but this is not true for user
defined functions.

08 March 2010 24

Thank you...

Any questions?

08 March 2010 25

——J_

Additional Slides

public class TrimProcessor : Processor

{

// This method is called at compile time to get column names and types of the output rows

public override Schema Produce (string[] requestedColumns, string[] args, Schema inputSchema)

{ return new Schema (requestedCoclumns) ; }
// This function trims all string valued columns and leaves others unchanged.

public override IEnumerable<Row> Process (RowSet input, Row outRow, string[] args)

{
foreach (Row row in input.Rows) {

row.Copy (outRow) ;
for (int i=0; i < row.Count; i++) {
if (outRow.Schema[i] .Type == ColumnDataType.String) {
outRow[i].Set (outRow[i].3tring.Trim())

}

yvield return outRow;

Figure 3: Example Implementation of a Custom Processor

08 March 2010 26

‘------------------------------------____-___________i'_

Additional Slides

// Join region, nation, and, supplier
s (Retain only the key of supplier)
RNS_JOIN =
SELECT s_suppkey, n_name
FROM region, nation, supplier
WHERE r regionkey == n_regionkey
AND n nationkey == s nationkey;

// Now join in part and partsupp

RNSPS_JOIN =
SELECT p partkey, ps supplycost,
ps_suppkey, p mfgr, n name
FROM part, partsupp, rns_join
WHERE p partkey == ps partkey
AND s:suppkey == psZsuppkey;

// Finish subquery so we get the min costs
SUBQ =
SELECT p partkey AS subg partkey,
MIN (ps_ supplycost) AS min cost
FROM rnsps_join
GROUP BY p partkey;

// Finish computation of main gquery

!/ (Join with subguery and join with supplier
!/ again to get the required output columns)
RESULT =

SELECT s_acctbal, s_name, p_partkey,
p_mifgr, s_address, s_phone, s_comment
FROM rnsps_join AS lo, subg AS sq, supplier AS s

WHERE lo. tk == .sub tk
08 March 2010 PRE lo-D_partkey == sd.subd partkey 27
o.ps_supplycost == min_ cost
AND lo.ps suppkey == s.s5_ suppkey

ORDER BY acctbal DESC, n_name, s name, partkey;

08 March 2010

Additional Slides

Stages
g RNSPS_JOIN
1
Partial Partial Partial
Agg Agg Agg
Distribute Distribute Distribute
-
SUBQ Distribute) (Distribute] [Distribute] 7
4 Full Agg Full Agg Full Agg
p
5 Distribute Distribute Distribute k Merge H; C Merge j i Merge) 8

6 (Merge j [Merge j [Merge j

Figure 8: Sub Execution Plan for TPC-H Query 2

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

