

A Cache Management
Strategy

CS 848: Course Project
Fall, 2006

University of Waterloo
Jeff Pound

Poor use of space
Possibly more cache hits
(ex. Full table caching)

Good use of space
Possibly less cache hits
(ex. Result caching)

Caching trade-off

● Storing too much data can be a waste of cache
space, but can yield a high cache hit rate

● Not storing enough data can mean a low cache
hit rate, but can be a better use of limited space

● We also have to address the problem of when
a query can be answered from the cache

Proposed Strategy

● Weaken the query sent to the back-end DB to
cache a superset of the results for the given
query

Proposed Strategy

● Weaken the query sent to the back-end DB to
cache a superset of the results for the given
query
– Do this in such a way that: we can avoid computing

query containment, yet still have an easy way to
determine when to use the cache and,

– The extra cached data is semantically related to the
query that caused the caching

Proposed Strategy

● Re-write queries (cache misses) with
conjunctive predicates in the where clause as
disjunctions (excluding join-conditions) and
cache the results
– This makes every predicate disjoint from every other

predicate that built the cache (a notion of “domain
completeness” on every key/value pair)

– (The results specified by any one predicate are not
further restricted by any other predicate)

Proposed Strategy

● Approximating query containment is now a
matter of n constant time table look-ups (where
n is the number of disjoint predicates in the
where clause of the incoming query)
– (we need to satisfy one predicate in each

conjunctive clause, and every predicate in each
disjunctive clause)

● No need to process probe queries at the cache
● Cache eviction can be done on a per-predicate

basis (Evict predicate p by deleting tuples
matching ∀ q q∈ predicateList , p≠q , p∧¬q

Proposed Project

● Implement and evaluate the specified cache
management strategy
– Compare against baseline strategies of full table

caching, and query result caching
– Measure comparative performance in various

caching situations (cache miss, cache hit, eviction,
etc...)

– Cache hit rate is only meaning full for real
workloads, of which I don't have :(

Example

π a , bσ A∧B∧C R
 σ A∨B∨C R Cache

R:{A,B,C}

Example

π a , bσ A∧B∧C R
 σ A∨B∨C R

π ...σ AR Hit

Cache
R:{A,B,C}

Example

π a , bσ A∧B∧C R
 σ A∨B∨C R

π ...σ AR Hit
π ...σ A∧DR Hit

Cache
R:{A,B,C}

Example

π a , bσ A∧B∧C R
 σ A∨B∨C R

π ...σ AR Hit
π ...σ A∧DR Hit
π ...σ A∧D∧...∧...R Hit

Cache
R:{A,B,C}

Example

π a , bσ A∧B∧C R
 σ A∨B∨C R

π ...σ AR Hit
π ...σ A∧DR Hit
π ...σ A∧D∧...∧...R Hit
π ...σ A∨DR Miss
 σ A∨DR

Cache
R:{A,B,C}

Cache
R:{A,B,C,D}

Questions/Comments?

?

