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Poor use of space
Possibly more cache hits
(ex. Full table caching)

Good use of space
Possibly less cache hits
(ex. Result caching)

Caching trade-off

● Storing too much data can be a waste of cache 
space, but can yield a high cache hit rate

● Not storing enough data can mean a low cache 
hit rate, but can be a better use of limited space

● We also have to address the problem of when 
a query can be answered from the cache



  

Proposed Strategy

● Weaken the query sent to the back-end DB to 
cache a superset of the results for the given 
query



  

Proposed Strategy

● Weaken the query sent to the back-end DB to 
cache a superset of the results for the given 
query
– Do this in such a way that: we can avoid computing 

query containment, yet still have an easy way to 
determine when to use the cache and,

– The extra cached data is semantically related to the 
query that caused the caching



  

Proposed Strategy

● Re-write queries (cache misses) with 
conjunctive predicates in the where clause as 
disjunctions (excluding join-conditions) and 
cache the results
– This makes every predicate disjoint from every other 

predicate that built the cache (a notion of “domain 
completeness” on every key/value pair)

– (The results specified by any one predicate are not 
further restricted by any other predicate)



  

Proposed Strategy

● Approximating query containment is now a 
matter of n constant time table look-ups (where 
n is the number of disjoint predicates in the 
where clause of the incoming query)
– (we need to satisfy one predicate in each 

conjunctive clause, and every predicate in each 
disjunctive clause)

● No need to process probe queries at the cache
● Cache eviction can be done on a per-predicate 

basis (Evict predicate p by deleting tuples 
matching ∀ q q∈ predicateList , p≠q , p∧¬q



  

Proposed Project

● Implement and evaluate the specified cache 
management strategy
– Compare against baseline strategies of full table 

caching, and query result caching
– Measure comparative performance in various 

caching situations (cache miss, cache hit, eviction, 
etc...)

– Cache hit rate is only meaning full for real 
workloads, of which I don't have :(



  

Example

π a , bσ A∧B∧C R
      σ A∨B∨C R Cache

R:{A,B,C}



  

Example

π a , bσ A∧B∧C R
      σ A∨B∨C R

π ...σ AR               Hit

Cache
R:{A,B,C}



  

Example

π a , bσ A∧B∧C R
      σ A∨B∨C R

π ...σ AR               Hit
π ...σ A∧DR           Hit

Cache
R:{A,B,C}



  

Example

π a , bσ A∧B∧C R
      σ A∨B∨C R

π ...σ AR               Hit
π ...σ A∧DR           Hit
π ...σ A∧D∧...∧...R   Hit

Cache
R:{A,B,C}



  

Example

π a , bσ A∧B∧C R
      σ A∨B∨C R

π ...σ AR               Hit
π ...σ A∧DR           Hit
π ...σ A∧D∧...∧...R   Hit
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Cache
R:{A,B,C,D}



  

Questions/Comments?

?


