
Triage: Performance Differentiation for
Storage Systems

Using Adaptive Control
Presentation of a paper by M. Karlsson, C. Karamanolis,
and X. Zhu from the ACM Transactions on Storage 1(4),

Nov 2005

Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo

November 1, 2006



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target

• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements

2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)

3. : allocate total throughput among workloads



System Model and Goals

• storage clients sends block requests to a shared storage
system

• each request is part of a workload

• each workload has a latency requirement

• each workload has a throughput allocation target
• goals

1. : enforce latency requirements
2. : maximize aggregate throughput (across all workloads)
3. : allocate total throughput among workloads



Throughput/Latency Tradeoff

throughput

la
te

nc
y

low high

low

high



Throughput Allocation Model

Workload 2

Workload 1

aggregate throughput

w
or

kl
oa

d 
th

ro
ug

hp
ut



Approach #1: Non-adaptive Control

storage
system

storage
client

throttle

measure

controller

measured latency

target
latency

controlled system



Non-adaptive Controller Design

• model the system to be controlled:

y(k) = αy(k − 1) + βu(k − 1)

Estimate α and β by fitting to observations under a
calibration workload.

• build two models, one for calibration workload with lots of
data locality, one for workload with little locality

• for each model, design a good (stable, accurate, short
settling time, little overshoot) I controller.

Problem

No controller works well for both system models.



Non-adaptive Controller Design

• model the system to be controlled:

y(k) = αy(k − 1) + βu(k − 1)

Estimate α and β by fitting to observations under a
calibration workload.

• build two models, one for calibration workload with lots of
data locality, one for workload with little locality

• for each model, design a good (stable, accurate, short
settling time, little overshoot) I controller.

Problem

No controller works well for both system models.



Approach #2: Adaptive Control

storage
system

storage
client

throttle

measure

controller

measured latency

target
latency

controlled system

estimator
model

control
rule



Adaptive vs. Non-Adaptive Control

Non-Adaptive :
• offline: build a global system model
• offline: design a controller for that model
• on-line: use the controller - model is not used

Adaptive :
• on-line: continuously update model of system

in the current operating region
• on-line: control rule uses current model



Adaptive Models

current operating region

current local model

la
te

nc
y

low high

low

high

throughput
current control

setting

recent measurements



Observations

• Adaptive controllers harder to reason about than
non-adaptive controllers. (Stability almost proved, but no
analysis of other properties.)

• Control rule has parameters and special cases: “age out”
old models instead of replacing them, check actuator
setting for boundary conditions, check for model
divergence.

• This approach is very general. What kind of system would
such a controller not work for?

• Triage actually uses a distributed controller
implementation. One controller per workload. Each
controller recommends an aggregate throughput based on
latency target and observed latencies for its own workload.
System uses the minimum of the throughput
recommendations.



Observations

• Adaptive controllers harder to reason about than
non-adaptive controllers. (Stability almost proved, but no
analysis of other properties.)

• Control rule has parameters and special cases: “age out”
old models instead of replacing them, check actuator
setting for boundary conditions, check for model
divergence.

• This approach is very general. What kind of system would
such a controller not work for?

• Triage actually uses a distributed controller
implementation. One controller per workload. Each
controller recommends an aggregate throughput based on
latency target and observed latencies for its own workload.
System uses the minimum of the throughput
recommendations.



Observations

• Adaptive controllers harder to reason about than
non-adaptive controllers. (Stability almost proved, but no
analysis of other properties.)

• Control rule has parameters and special cases: “age out”
old models instead of replacing them, check actuator
setting for boundary conditions, check for model
divergence.

• This approach is very general. What kind of system would
such a controller not work for?

• Triage actually uses a distributed controller
implementation. One controller per workload. Each
controller recommends an aggregate throughput based on
latency target and observed latencies for its own workload.
System uses the minimum of the throughput
recommendations.



Observations

• Adaptive controllers harder to reason about than
non-adaptive controllers. (Stability almost proved, but no
analysis of other properties.)

• Control rule has parameters and special cases: “age out”
old models instead of replacing them, check actuator
setting for boundary conditions, check for model
divergence.

• This approach is very general. What kind of system would
such a controller not work for?

• Triage actually uses a distributed controller
implementation. One controller per workload. Each
controller recommends an aggregate throughput based on
latency target and observed latencies for its own workload.
System uses the minimum of the throughput
recommendations.


