
SVL: Storage Virtualization Engine
Leveraging DBMS Technology

Presentation of a paper by L. Qiao, B. Iyer, D. Agrawal and
A. El Abbadi from the International Conference on Data

Engineering (ICDE’05)

Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo

September 27, 2006



Storage Virtualization

Logical Devices

Physical Devices



Storage Virtualization

Logical Devices

Physical Devices



DBMS Storage Mapping

relations

tablespaces
containers



DBMS Storage Mapping

relations

tablespaces
containers



Virtualization Mapping in SVN

relations

tablespaces
containers

Logical Devices

Physical Devices



Virtualization Mapping in SVN

relations

tablespaces
containers

Logical Devices

Physical Devices



SVN Table Block Vectors

datanumber

1

6

11

16 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

• k logical blocks per tuple
(k = 5 in example)

• k determined by number of
logical blocks that fit into one
DBMS page

• clustered index is created on
the block number attribute

Block Read Procedure

Read block x from logical device i ⇒
SELECT data FROM Ti WHERE number =x/k



SVN Table Block Vectors

datanumber

1

6

11

16 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

• k logical blocks per tuple
(k = 5 in example)

• k determined by number of
logical blocks that fit into one
DBMS page

• clustered index is created on
the block number attribute

Block Read Procedure

Read block x from logical device i ⇒
SELECT data FROM Ti WHERE number =x/k



SVN Table Block Vectors

datanumber

1

6

11

16 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

• k logical blocks per tuple
(k = 5 in example)

• k determined by number of
logical blocks that fit into one
DBMS page

• clustered index is created on
the block number attribute

Block Read Procedure

Read block x from logical device i ⇒
SELECT data FROM Ti WHERE number =x/k



SVN Table Block Vectors

datanumber

1

6

11

16 20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

• k logical blocks per tuple
(k = 5 in example)

• k determined by number of
logical blocks that fit into one
DBMS page

• clustered index is created on
the block number attribute

Block Read Procedure

Read block x from logical device i ⇒
SELECT data FROM Ti WHERE number =x/k



SVN Control Path

App
SVN

DBMS

OS

Read/Write Read/WriteSQL

SCSI



What About Performance?

static SQL : pre-compile SQL for block read and write
commands

Table Direct Access : eliminate B-tree on number in favour of
direct computation of tuple ID.

CONCAT SQL aggregation function :
• aggregates logical blocks from multiple tuples
• returns data through a shared memory side

channel

DECONCAT SQL scalar function : like CONCAT, but for
Writes



What About Performance?

static SQL : pre-compile SQL for block read and write
commands

Table Direct Access : eliminate B-tree on number in favour of
direct computation of tuple ID.

CONCAT SQL aggregation function :
• aggregates logical blocks from multiple tuples
• returns data through a shared memory side

channel

DECONCAT SQL scalar function : like CONCAT, but for
Writes



What About Performance?

static SQL : pre-compile SQL for block read and write
commands

Table Direct Access : eliminate B-tree on number in favour of
direct computation of tuple ID.

CONCAT SQL aggregation function :
• aggregates logical blocks from multiple tuples
• returns data through a shared memory side

channel

DECONCAT SQL scalar function : like CONCAT, but for
Writes



What About Performance?

static SQL : pre-compile SQL for block read and write
commands

Table Direct Access : eliminate B-tree on number in favour of
direct computation of tuple ID.

CONCAT SQL aggregation function :
• aggregates logical blocks from multiple tuples
• returns data through a shared memory side

channel

DECONCAT SQL scalar function : like CONCAT, but for
Writes



Bonus Features

encryption : apply built-in ENCRYPT/DECRYPT DBMS
functions to data in each tuple

compression : apply built-in COMPRESS/UNCOMPRESS
DBMS functions to data in each tuple

Warning

These transformations turn fixed-length data into
variable-length data. This breaks Table Direct Access.



Bonus Features

encryption : apply built-in ENCRYPT/DECRYPT DBMS
functions to data in each tuple

compression : apply built-in COMPRESS/UNCOMPRESS
DBMS functions to data in each tuple

Warning

These transformations turn fixed-length data into
variable-length data. This breaks Table Direct Access.



Bonus Features

encryption : apply built-in ENCRYPT/DECRYPT DBMS
functions to data in each tuple

compression : apply built-in COMPRESS/UNCOMPRESS
DBMS functions to data in each tuple

Warning

These transformations turn fixed-length data into
variable-length data. This breaks Table Direct Access.



Experimental Results

• experiments compared SVM to “virtual shared disk” (VSD)
in AIX

• workload provided by several block I/O request traces

• SVM had 10GB tablespace and two raw device
containiners. VSD had one 10GB logical device from two
physical devices.

• Without optimizations, SVM required 30 times more CPU
time than VSD on reads and writes.

• With all optimizations, SVM and VSD CPU times were
comparable (12% slowdown on writes). SVM had about a
40% latency penalty on writes, 0-10% for reads.



Experimental Results

• experiments compared SVM to “virtual shared disk” (VSD)
in AIX

• workload provided by several block I/O request traces

• SVM had 10GB tablespace and two raw device
containiners. VSD had one 10GB logical device from two
physical devices.

• Without optimizations, SVM required 30 times more CPU
time than VSD on reads and writes.

• With all optimizations, SVM and VSD CPU times were
comparable (12% slowdown on writes). SVM had about a
40% latency penalty on writes, 0-10% for reads.



Experimental Results

• experiments compared SVM to “virtual shared disk” (VSD)
in AIX

• workload provided by several block I/O request traces

• SVM had 10GB tablespace and two raw device
containiners. VSD had one 10GB logical device from two
physical devices.

• Without optimizations, SVM required 30 times more CPU
time than VSD on reads and writes.

• With all optimizations, SVM and VSD CPU times were
comparable (12% slowdown on writes). SVM had about a
40% latency penalty on writes, 0-10% for reads.



So What?

• Driving tacks with a sledgehammer?

• Storage virtualization is more than a mechanism for
logical-to-physical mapping. (Provisioning,
management/admin tools...) Does DBMS implementation
help with these?

• How flexible are tablespace mappings in DBMS?



So What?

• Driving tacks with a sledgehammer?

• Storage virtualization is more than a mechanism for
logical-to-physical mapping. (Provisioning,
management/admin tools...) Does DBMS implementation
help with these?

• How flexible are tablespace mappings in DBMS?



So What?

• Driving tacks with a sledgehammer?

• Storage virtualization is more than a mechanism for
logical-to-physical mapping. (Provisioning,
management/admin tools...) Does DBMS implementation
help with these?

• How flexible are tablespace mappings in DBMS?


