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SVN Table Block Vectors

datanumber
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• k logical blocks per tuple
(k = 5 in example)

• k determined by number of
logical blocks that fit into one
DBMS page

• clustered index is created on
the block number attribute

Block Read Procedure

Read block x from logical device i ⇒
SELECT data FROM Ti WHERE number =x/k
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What About Performance?

static SQL : pre-compile SQL for block read and write
commands

Table Direct Access : eliminate B-tree on number in favour of
direct computation of tuple ID.

CONCAT SQL aggregation function :
• aggregates logical blocks from multiple tuples
• returns data through a shared memory side

channel

DECONCAT SQL scalar function : like CONCAT, but for
Writes
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Bonus Features

encryption : apply built-in ENCRYPT/DECRYPT DBMS
functions to data in each tuple

compression : apply built-in COMPRESS/UNCOMPRESS
DBMS functions to data in each tuple

Warning

These transformations turn fixed-length data into
variable-length data. This breaks Table Direct Access.
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Experimental Results

• experiments compared SVM to “virtual shared disk” (VSD)
in AIX

• workload provided by several block I/O request traces

• SVM had 10GB tablespace and two raw device
containiners. VSD had one 10GB logical device from two
physical devices.

• Without optimizations, SVM required 30 times more CPU
time than VSD on reads and writes.

• With all optimizations, SVM and VSD CPU times were
comparable (12% slowdown on writes). SVM had about a
40% latency penalty on writes, 0-10% for reads.
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So What?

• Driving tacks with a sledgehammer?

• Storage virtualization is more than a mechanism for
logical-to-physical mapping. (Provisioning,
management/admin tools...) Does DBMS implementation
help with these?

• How flexible are tablespace mappings in DBMS?
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