Conflict-driven Load Control for the Avoidance of Data-Contention Thrashing Presentation of a paper by A. Moenkeberg and G. Weikum from the International Conference on Data Engineering (ICDE'91)

Ken Salem

David R. Cheriton School of Computer Science University of Waterloo

November 8, 2006

The Problem

The Problem: data contention may cause a DBMS to perform poorly if too many transactions run concurrently.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Problem

The Problem: data contention may cause a DBMS to perform poorly if too many transactions run concurrently.

The Solution: limit the number of concurrently executing transactions

- What is the actuator?
 - transaction admissions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- What is the actuator?
 - transaction admissions
- What is measured?

- What is the actuator?
 - transaction admissions
- What is measured?
 - Control objective is to maximize throughput, avoiding thrashing. Could directly measure throughput.

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト つくぐ

- What is the actuator?
 - transaction admissions
- What is measured?
 - Control objective is to maximize throughput, avoiding thrashing. Could directly measure throughput.
 - Problem: what reference value to use? What is the target throughput?

- What is the actuator?
 - transaction admissions
- What is measured?
 - Control objective is to maximize throughput, avoiding thrashing. Could directly measure throughput.
 - Problem: what reference value to use? What is the target throughput?

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

• Proposal: measure conflict rate, and keep it below a specified target value.

- What is the actuator?
 - transaction admissions
- What is measured?
 - Control objective is to maximize throughput, avoiding thrashing. Could directly measure throughput.
 - Problem: what reference value to use? What is the target throughput?

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

• Proposal: measure conflict rate, and keep it below a specified target value.

Observation

This turns a dynamic optimization problem into a regulation problem.

Conflict Rate

conflict rate = $\frac{\# \text{ locks held by all transactions}}{\# \text{ locks held by non-blocked transactions}}$

- conflict rate ≥ 1
- conflict rate = 1 when no active transactions are blocked

うつん 川 エー・エー・ エー・シック

conflict rate increases as more transactions block

Conflict Rate

conflict rate = $\frac{\# \text{ locks held by all transactions}}{\# \text{ locks held by non-blocked transactions}}$

- conflict rate ≥ 1
- conflict rate = 1 when no active transactions are blocked
- conflict rate increases as more transactions block

Claim

conflict rate \geq 1.3 implies data-contention thrashing, regardless of the workload

うつん 川 エー・エー・ エー・シック

Regulating Conflict Rate

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposed Control Rules

- irregular control interval
 - control applied when a lock request blocks and when a transaction request arrives/finishes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Proposed Control Rules

- irregular control interval
 - control applied when a lock request blocks and when a transaction request arrives/finishes
- when a transaction arrives/finishes, consider admitting new transactions
 - A0: admit one
 - A1: admit all
 - A2: admit some (until projected conflict rate reaches limit)

Proposed Control Rules

- irregular control interval
 - control applied when a lock request blocks and when a transaction request arrives/finishes
- when a transaction arrives/finishes, consider admitting new transactions
 - A0: admit one
 - A1: admit all
 - A2: admit some (until projected conflict rate reaches limit)
- when transaction blocks, consider aborting transactions
 - C0: abort none
 - C1: abort one
 - C2: abort some (until conflict rate is below limit)

Comments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

• 1.3???

Comments

- 1.3???
- In general, there may be multiple potential bottlenecks in the DBMS:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- lock contention
- CPU contention
- disk contention

Comments

- 1.3???
- In general, there may be multiple potential bottlenecks in the DBMS:
 - lock contention
 - CPU contention
 - disk contention
- Heiss and Wagner (VLDB'91) attempt to solve the dynamic optimization problem directly

