CS848 Management of Information Systems Fall 2006

Ken Salem

David R. Cheriton School of Computer Science University of Waterloo

Virtualization

Server Virtualization

Server virtualization adds a layer of indirection between the OS and the physical server hardware.

Virtual Machine Monitors

- VMMs implement virtual servers
- Examples:
 - Xen
 - VMWare (various products)
- VMM administrative interface allows virtual machines to be configured, tuned, and controlled
 - virtual hardware configuration, e.g., number of processors, memory size, disks, network interface
 - power on/off, suspend/resume, checkpoint
 - dynamic tuning, e.g., CPU scheduling parameters, memory size

Why Virtualize?

- resource management, resource consolidation
 - replace silo deployments with shared data center
- fault isolation, security
 - VMM provides better isolation than OS
- application compatibility
- support software lifecycle
 - heterogeneous testing environments, duplicate environments
- software deployment

Storage Virtualization

- configuration and adjustment of virtual device characteristics
 - capacity
 - performance
 - reliability
- management automation
 - dynamic allocation
 - hierarchical storage management

Storage virtualization adds indirection above the physical hardware.

Storage Architecture: DAS

Storage Architecture: SAN

Storage Virtualization Points

- 1. storage virtualization at the host
- 2. storage virtualization at the target
- 3. storage virtualization in the SAN

Control Objectives

regulation: adjust control input so that measured output stays

close to a reference value.

optimization: adjust control input to optimize (maximize or

minimize) a measured output.

Challenges

Characteristics of the target system, characteristics of the workload, and the reference value may all change over time.

Regulation Example

Regulation Problem

Adjust the CPU share of VM1 to maintain a mean request response time for DBMS1 of 2 seconds.

Optimization Example

Optimization Problem

Adjust size of request service thread pool to maximize the request throughput.

Feedback (Closed-Loop) Control

SISO control: single input, single output MISO control: multi-input, single output MIMO control: multi-input, multi-output

Controller Properties

time

Desirable Controller Properties

Stability, accuracy, small setting time, small overshoot

Basic Controllers: Proportional (P) Control

- control rule: $u(t) = K_P e(t)$
- control input is proportional to error
- inaccurate but fast
 - control input moves quickly in response to errors
 - e(t) = 0 implies u(t) = 0

Notation

```
u(t): control input at time t
```

r(t): reference input at time t

y(t): measured output at time t

e(t) = r(t) - y(t): control error at time t

Basic Controllers: Integral (I) Control

- control rule: $u(t) = u(t-1) + K_l e(t)$
- change in control input is proportional to error
- slow but accurate

Notation

```
u(t): control input at time t
```

$$r(t)$$
: reference input at time t

$$y(t)$$
: measured output at time t

$$e(t) = r(t) - y(t)$$
: control error at time t

Basic Controllers: Derivative (D) Control

- control rule: $u(t) = K_D[e(t) e(t-1)]$
- control input is proportional to change in error
- idea: react quickly to large changes in error

Notation

```
u(t): control input at time t
```

$$r(t)$$
: reference input at time t

$$y(t)$$
: measured output at time t

$$e(t) = r(t) - y(t)$$
: control error at time t

More Controllers

- controllers can be combined to balance strengths and weaknesses
- example: PI control combines P control and I control

•
$$u(t) = u(t-1) + (K_P + K_I)e(t) - K_Pe(t-1)$$

other examples: PD control, PID control

Controller Design

- the controller design problem is the problem of designing a control rule for a particular target system
- controller designs seek to ensure stability and to achieve a balance among accuracy, settling time, and overshoot
- in the case of P, I, and D controllers, controller design amounts to choosing values for the constants K_P, K_I, K_D.

Target System Modeling

Controller design depends on having a model of the target system. A model relates the control input(s) u(t) to the measured output(s) y(t).

Control Example

QoS Metrics

Possible QoS outputs include request loss ratio and response time ratio.

Control Example: Measured Loss Ratios

Control

Control Example: Measured Response Times

Control Example: Measured Ratios

