
Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

CS848 Management of Information Systems
Fall 2006

Ken Salem

David R. Cheriton School of Computer Science
University of Waterloo



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Problems Caused by Failures

• Update all account balances at a bank branch.

Accounts(Anum , CId, BranchId, Balance)

UPDATE Accounts
SET Balance = Balance * 1.05
WHERE BranchId = 12345

Problem

If the system crashes while processing this update, some, but
not all, tuples with BranchId = 12345 may have been
updated.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Another Failure-Related Problem

• transfer money between accounts:

UPDATE Accounts
SET Balance = Balance - 100
WHERE Anum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE Anum = 9999

Problem

If the system fails between these updates, money may be
withdrawn but not redeposited



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Problems Caused by Concurrency

• Application 1:

UPDATE Accounts
SET Balance = Balance - 100
WHERE Anum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE Anum = 9999

• Application 2:

SELECT Sum(Balance)
FROM Accounts

Problem

If the applications run concurrently, the total balance returned
to Application 2 may be inaccurate.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Another Concurrency Problem

• Application 1:

SELECT balance INTO :balance
FROM Accounts
WHERE Anum = 8888
compute :newbalance using :balance
UPDATE Accounts
SET Balance = :newbalance
WHERE Anum = 8888

• Application 2: same as Application 1

Problem

If the applications run concurrently, one of the updates may be
“lost”.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Transaction Properties

• Transactions are durable, atomic application-specified
units of work.

Atomic: indivisible, all-or-nothing.
Durable: effects survive failures.

“ACID” Properties of Transactions

A tomic: a transaction occurs entirely, or not at all

C onsistent

I solated: a transaction’s unfinished changes are
not visible to others

D urable: once it is complete, a transaction’s
changes are permanent



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Abort and Commit

• A transaction may terminate in one of two ways:
commit: When a transaction commits, any updates it

made become durable, and they become
visible to other transactions. A commit is the
“all” in “all-or-nothing” execution.

abort: When a transaction aborts, any updates it
may have made are undone (erased), as if the
transaction never ran at all. An abort is the
“nothing” in “all-or-nothing” execution.

• A transaction that has started but has not yet aborted or
committed is said to be active.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Serializability (informal)

• Concurrent transactions must appear to have been
executed sequentially, i.e., one at a time, in some order. If
Ti and Tj are concurrent transactions, then either:

• Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made
by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj ’s
updates and Tj will not see Ti ’s.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Serializability: An Example

• An serial execution of two transactions, T1 and T2:

Hb = w1[x ] w1[y ] r2[x ] r2[y ]

• An equivalent interleaved execution of T1 and T2:

Ha = w1[x ] r2[x ] w1[y ] r2[y ]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x ] r2[x ] r2[y ] w1[y ]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Serialization Graphs

The serialization graph SG(H) of a complete execution history
H is the directed graph with

• one node for each committed transaction in H

• an directed edge from Ti to Tj iff there are operations oi [x ]
and oj [x ] in H such that oi [x ] precedes and conflicts with
oj [x ].

Theorem

H is serializable iff SG(H) is acyclic.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem

If all transactions use two-phase locking, the resulting execution
history will be serializable.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Snapshot Isolation (informal)

• each transaction T has a start time (start(T )) and a
commit time (commit(T )) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that include all updates of transactions that commit before
start(T ) and no updates of transactions that commit after
start(T ), except . . .

• . . . that T sees its own updates.

• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

One-Copy Serializability (1SR)

• A 1SR history:

Ha = r2[x0] r2[y0] r1[x0]w2[y2]c2 r1[y2]w1[x1]c1 r3[x1] r3[y2]c3

• An SI (1SR?) history:

Hb = r1[x0] r1[y0] r2[x0] r2[y0]w1[x1]c1 r3[x1] r3[y0]c3 w2[y2]c2

1SR vs. SI

• 1SR ⇒ SI

• SI 6⇒ 1SR



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Freshness and Strong Serializability

• Consider the following history:

Hc = r2[x0] r2[y0] r1[x0]w2[y2]c2 r3[x0] r3[y0]c3 r1[y2]w1[x1]c1

• Hc is 1SR, but T3 sees a stale copy of y (y0 instead of y2)

• An execution history H is strongly serializable (strongly
1SR) if H is serializable (1SR) and all pairs of
non-concurrent transactions in H can be serialized in the
order in which they execute.

• Hc is not strongly 1SR, because T3 follows T2 but is
serialized before T2.

Freshness vs. Consistency

Freshness and consistency are orthogonal issues.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Aborts and Failures

Database Buffer

Database

DISK (non−volatile)

MEMORY (volatile)

• If a transaction aborts, any changes that it made must be
eliminated from volatile and non-volatile storage.

• A system failure destroys the contents of volatile memory.
• To recover, the system must ensure that:

• committed changes are reflected in non-volatile memory
• aborted changes are not reflected in non-volatile memory
• active transactions are either resumed or cleanly aborted.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Committing Transactions

Log Buffer

Database Buffer

Database

Log

DISK (non−volatile)

MEMORY (volatile)

• Suppose individual blocks can be written atomically from
volatile memory to non-volatile disk.

• Suppose a transaction T updates two blocks. How to
commit T safely?

• Common solution: use a log



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Write-Ahead Logging

• Before performing an update, write redo and undo
information into the log.

• Before writing a data page from volatile to non-volatile
storage, ensure that all log entries for that page are
non-volatile.

• To commit a transaction, write a commit record into the log.
Ensure that the commit record is non-volatile before
acknowledging the commit to the application.

Atomic Commitment

Moving the commit record into non-volatile storage commits the
transaction.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Data Partitioning

�
�

�
�

DBMS

T

R
S �

�
�
�

�
�

�
�

- R
S

DBMS A DBMS B

σA(T ) σB(T )

• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?

• adding/removing sites involves data redistribution



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Two Phase Commit

T TT

S

DBMS BDBMS A

R
X

DBMS C

1. UPDATE R

2. UPDATE S

3. UPDATE X

4. COMMIT
• 2PC phase 1
• 2PC phase 2



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Data Replication

�
�

�
�

�
�

�
�

-�
�

�
�

R
S

DBMS A DBMS BDBMS

T

R
S S

R

T T

• transactions execute at one site (possible exception:
synchronization)

• synchronization: how to keep copies consistent?

• replicas are redundant, require extra space

• simple (though expensive) to add sites, simple to remove
sites



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Materialized Views and Query Caching

�
�

�
�

�
�

�
�

-�
�

�
�

R

DBMS A DBMS BDBMS

T

R
S S

σB(R)

T S 1 T

• transactions execute at one or two sites

• synchronization: how to keep views consistent

• matierialized views are redundant, require extra space

• simple to add/remove sites



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Replication Techniques: Eager [GHOS96]

• to read R, read local replica of R

• to update R, update all replicas of R
• global concurrency control

• each local site has a local concurrency controller which
locks local replicas

• global (multi-site) update transactions consist of
sub-transactions at each site

• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Replication Techniques: Lazy/Group [GHOS96]

• to read R, read local replica of R

• to update R, update local replica of R

• propagate updates lazily to other sites, where they are
applied by separate local transactions at those sites

• Problems:
• no guarantee of 1SR
• conflicting updates
• (manual) reconciliation of resulting inconsistencies



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Replication Techniques: Lazy/Master [GHOS96]

• to read R, read local replica of R

• to update R, update master replica of R

• propagate updates lazily to other replicas, where they are
applied by separate local transactions at those sites

• Problems:
• no guarantee of 1SR
• (manual) reconciliation of resulting inconsistencies



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Lazy/Master Example

T1 T2T1’

Site A Site B

x y yx

T2’

• Site A has master copy of x , replica of y
• Site B has master copy of y , replica of x
• Transaction T1 at site A: r1[x ] r1[y ] w1[x ] c1

• Transaction T2 at site B: r2[x ] r2[y ] w2[y ] c2

• Propagation transaction T ′
1 for T1 (at site B): w1[x ] c1

• Propagation transaction T ′
2 for T2 (at site A): w2[y ] c2

• Global execution is not 1SR.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Views

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND

LibraryId = ’UW’

Views

Views are named queries that can be used much like regular
tables.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Materialized Views

• materialized views are views for which the result of the
underlying query has been computed and stored

• issues:
transparency: is the application aware of the materialized

views?
synchronization: what happens to the stored query result

when the underlying database is updated?

Full replication is a special case of view materialization.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Transparency

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

• non-transparent:
SELECT * FROM CSBooks

• transparent:
SELECT Title FROM Books
WHERE Topic = ’CS’ AND Year = 2006

View Matching Problem

Is a given view relevant to a given query?



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Views and Updates

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated

mechanism: how is the materialized view updated?
full refresh: recompute the view after the

underlying table is updated
incremental refresh: compute the view changes

that result from the update, and apply
them to the old materialized view



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books . Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS

SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings . Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings .



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• like view materialization:
• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Bibliography

Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha.
The dangers of replication and a solution.
In Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD’96), pages 173–182, 1996.



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Paper Presentations and Reviews

• Presentations
• 25 minutes
• focus on the most interesting and significant material: no

need to be comprehensive
• try to put the material in context: how does it relate to

papers or lecture topics covered in this course
• try to raise issues for discussion

• Reviews
• pretend you are reviewing for a conference
• follow the instructions on the review form, including length

limits


	Transactions, Atomicty, Concurrency
	Distribution and Replication
	Materialized Views and Caching

