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Problems Caused by Failures

• Update all account balances at a bank branch.

Accounts(Anum , CId, BranchId, Balance)

UPDATE Accounts
SET Balance = Balance * 1.05
WHERE BranchId = 12345

Problem

If the system crashes while processing this update, some, but
not all, tuples with BranchId = 12345 may have been
updated.
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Another Failure-Related Problem

• transfer money between accounts:

UPDATE Accounts
SET Balance = Balance - 100
WHERE Anum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE Anum = 9999

Problem

If the system fails between these updates, money may be
withdrawn but not redeposited
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Problems Caused by Concurrency

• Application 1:

UPDATE Accounts
SET Balance = Balance - 100
WHERE Anum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE Anum = 9999

• Application 2:

SELECT Sum(Balance)
FROM Accounts

Problem

If the applications run concurrently, the total balance returned
to Application 2 may be inaccurate.
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Another Concurrency Problem

• Application 1:

SELECT balance INTO :balance
FROM Accounts
WHERE Anum = 8888
compute :newbalance using :balance
UPDATE Accounts
SET Balance = :newbalance
WHERE Anum = 8888

• Application 2: same as Application 1

Problem

If the applications run concurrently, one of the updates may be
“lost”.
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Transaction Properties

• Transactions are durable, atomic application-specified
units of work.

Atomic: indivisible, all-or-nothing.
Durable: effects survive failures.

“ACID” Properties of Transactions

A tomic: a transaction occurs entirely, or not at all

C onsistent

I solated: a transaction’s unfinished changes are
not visible to others

D urable: once it is complete, a transaction’s
changes are permanent
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Abort and Commit

• A transaction may terminate in one of two ways:
commit: When a transaction commits, any updates it

made become durable, and they become
visible to other transactions. A commit is the
“all” in “all-or-nothing” execution.

abort: When a transaction aborts, any updates it
may have made are undone (erased), as if the
transaction never ran at all. An abort is the
“nothing” in “all-or-nothing” execution.

• A transaction that has started but has not yet aborted or
committed is said to be active.
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Serializability (informal)

• Concurrent transactions must appear to have been
executed sequentially, i.e., one at a time, in some order. If
Ti and Tj are concurrent transactions, then either:

• Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made
by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj ’s
updates and Tj will not see Ti ’s.
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Serializability: An Example

• An serial execution of two transactions, T1 and T2:

Hb = w1[x ] w1[y ] r2[x ] r2[y ]

• An equivalent interleaved execution of T1 and T2:

Ha = w1[x ] r2[x ] w1[y ] r2[y ]

• An interleaved execution of T1 and T2 with no equivalent
serial execution:

Hc = w1[x ] r2[x ] r2[y ] w1[y ]

Hb is serializable because it is equivalent to Ha , a serial
schedule. Hc is not serializable.
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Serialization Graphs

The serialization graph SG(H) of a complete execution history
H is the directed graph with

• one node for each committed transaction in H

• an directed edge from Ti to Tj iff there are operations oi [x ]
and oj [x ] in H such that oi [x ] precedes and conflicts with
oj [x ].

Theorem

H is serializable iff SG(H) is acyclic.
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Two-Phase Locking

• The rules
1. Before a transaction may read or write an object, it must

have a lock on that object.
• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold locks on the same
object unless all hold shared locks.

3. Once a transaction has released (unlocked) any object, it
may not obtain any new locks. (In strict two-phase locking,
locks are held until the transaction commits or aborts.)

Theorem

If all transactions use two-phase locking, the resulting execution
history will be serializable.
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Snapshot Isolation (informal)

• each transaction T has a start time (start(T )) and a
commit time (commit(T )) - unless it aborts.

• each transacation T “sees” a snapshot of the database
that include all updates of transactions that commit before
start(T ) and no updates of transactions that commit after
start(T ), except . . .

• . . . that T sees its own updates.

• If two transactions Ti and Tj are concurrent, then Ti and Tj

are not permitted to update the same object.

Properties of SI

SI provides each transaction with a consistent view of the
database, and avoids “lost updates”.
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One-Copy Serializability (1SR)

• A 1SR history:

Ha = r2[x0] r2[y0] r1[x0]w2[y2]c2 r1[y2]w1[x1]c1 r3[x1] r3[y2]c3

• An SI (1SR?) history:

Hb = r1[x0] r1[y0] r2[x0] r2[y0]w1[x1]c1 r3[x1] r3[y0]c3 w2[y2]c2

1SR vs. SI

• 1SR ⇒ SI

• SI 6⇒ 1SR



Transactions, Atomicty, Concurrency Distribution and Replication Materialized Views and Caching

Freshness and Strong Serializability

• Consider the following history:

Hc = r2[x0] r2[y0] r1[x0]w2[y2]c2 r3[x0] r3[y0]c3 r1[y2]w1[x1]c1

• Hc is 1SR, but T3 sees a stale copy of y (y0 instead of y2)

• An execution history H is strongly serializable (strongly
1SR) if H is serializable (1SR) and all pairs of
non-concurrent transactions in H can be serialized in the
order in which they execute.

• Hc is not strongly 1SR, because T3 follows T2 but is
serialized before T2.

Freshness vs. Consistency

Freshness and consistency are orthogonal issues.
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Aborts and Failures

Database Buffer

Database

DISK (non−volatile)

MEMORY (volatile)

• If a transaction aborts, any changes that it made must be
eliminated from volatile and non-volatile storage.

• A system failure destroys the contents of volatile memory.
• To recover, the system must ensure that:

• committed changes are reflected in non-volatile memory
• aborted changes are not reflected in non-volatile memory
• active transactions are either resumed or cleanly aborted.
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Committing Transactions

Log Buffer

Database Buffer

Database

Log

DISK (non−volatile)

MEMORY (volatile)

• Suppose individual blocks can be written atomically from
volatile memory to non-volatile disk.

• Suppose a transaction T updates two blocks. How to
commit T safely?

• Common solution: use a log
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Write-Ahead Logging

• Before performing an update, write redo and undo
information into the log.

• Before writing a data page from volatile to non-volatile
storage, ensure that all log entries for that page are
non-volatile.

• To commit a transaction, write a commit record into the log.
Ensure that the commit record is non-volatile before
acknowledging the commit to the application.

Atomic Commitment

Moving the commit record into non-volatile storage commits the
transaction.
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Data Partitioning
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• transactions may span sites (distributed queries,
distributed transactions)

• physical design: which data at each site?

• adding/removing sites involves data redistribution
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Two Phase Commit
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• 2PC phase 1
• 2PC phase 2
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Data Replication
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• transactions execute at one site (possible exception:
synchronization)

• synchronization: how to keep copies consistent?

• replicas are redundant, require extra space

• simple (though expensive) to add sites, simple to remove
sites
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Materialized Views and Query Caching
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• transactions execute at one or two sites

• synchronization: how to keep views consistent

• matierialized views are redundant, require extra space

• simple to add/remove sites
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Replication Techniques: Eager [GHOS96]

• to read R, read local replica of R

• to update R, update all replicas of R
• global concurrency control

• each local site has a local concurrency controller which
locks local replicas

• global (multi-site) update transactions consist of
sub-transactions at each site

• use 2PC to atomically commit transaction updates

Global Serializability

Local strict two-phase locking + 2PC for commit coordination is
sufficient to ensure global 1SR.
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Replication Techniques: Lazy/Group [GHOS96]

• to read R, read local replica of R

• to update R, update local replica of R

• propagate updates lazily to other sites, where they are
applied by separate local transactions at those sites

• Problems:
• no guarantee of 1SR
• conflicting updates
• (manual) reconciliation of resulting inconsistencies
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Replication Techniques: Lazy/Master [GHOS96]

• to read R, read local replica of R

• to update R, update master replica of R

• propagate updates lazily to other replicas, where they are
applied by separate local transactions at those sites

• Problems:
• no guarantee of 1SR
• (manual) reconciliation of resulting inconsistencies
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Lazy/Master Example

T1 T2T1’

Site A Site B

x y yx

T2’

• Site A has master copy of x , replica of y
• Site B has master copy of y , replica of x
• Transaction T1 at site A: r1[x ] r1[y ] w1[x ] c1

• Transaction T2 at site B: r2[x ] r2[y ] w2[y ] c2

• Propagation transaction T ′
1 for T1 (at site B): w1[x ] c1

• Propagation transaction T ′
2 for T2 (at site A): w2[y ] c2

• Global execution is not 1SR.
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Views

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND

LibraryId = ’UW’

Views

Views are named queries that can be used much like regular
tables.
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Materialized Views

• materialized views are views for which the result of the
underlying query has been computed and stored

• issues:
transparency: is the application aware of the materialized

views?
synchronization: what happens to the stored query result

when the underlying database is updated?

Full replication is a special case of view materialization.
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Transparency

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

• non-transparent:
SELECT * FROM CSBooks

• transparent:
SELECT Title FROM Books
WHERE Topic = ’CS’ AND Year = 2006

View Matching Problem

Is a given view relevant to a given query?
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Views and Updates

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

CREATE VIEW UWHoldings AS
SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

• Changes (INSERT, DELETE, UPDATE) to Books may
change the result of the query that defines CSBooks.

• Changes to Holdings may change the result of the query
that defines UWHoldings.

Update Relevance

An update is relevant to a view if that update could change the
result of the view’s underlying query.
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Synchronization

timing: when relevant updates occur, when is the
materialized view updated?
immediate: view is updated within the transaction

that updates the underlying table
deferred: view updated occurs after the

underlying table is updated

mechanism: how is the materialized view updated?
full refresh: recompute the view after the

underlying table is updated
incremental refresh: compute the view changes

that result from the update, and apply
them to the old materialized view
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Incremental Refresh

Books (BookId, Title, Author, Subject, Year)

CREATE VIEW CSBooks AS
SELECT * FROM Books WHERE Subject = ’CS’

Suppose tuple t is inserted into Books . Incremental
maintenance of CSBooks involves:

1. test whether t .Subject = ’CS’

2. if so, insert t into CSBooks
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Incremental Refresh (cont’d)

Books (BookId, Title, Author, Subject, Year)
Holdings (BookId, LibraryId)
CREATE VIEW UWHoldings AS

SELECT Title FROM Books B, Holdings H
WHERE B.BookId = H.BookId AND LibraryId = ’UW’

Suppose tuple t is inserted into Holdings . Incremental
maintenance of UWHoldings involves:

1. test whether t .LibraryId = ’UW’

2. join t with Books on t .BookId = Books.BookId

3. insert the resulting Title into UWHOldings

Self-Maintainability

UWHoldings is not self-maintainable wrt inserts into
Holdings .
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Query Caching

• materialize query results and use them to answer
subsequent queries more quickly

• like view materialization:
• dynamic set of materialized queries
• transparent to applications

• exact matching based on query text
• more general or partial matching

• sychronization
• incremental refresh
• invalidation
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Paper Presentations and Reviews

• Presentations
• 25 minutes
• focus on the most interesting and significant material: no

need to be comprehensive
• try to put the material in context: how does it relate to

papers or lecture topics covered in this course
• try to raise issues for discussion

• Reviews
• pretend you are reviewing for a conference
• follow the instructions on the review form, including length

limits
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