
Dynamic Provisioning of
Multi-tier Internet Applications

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek
Chandra , and Pawan Goyal

Presentation: Jeff Pound

Outline
 The problem
 Baseline approaches
 Dynamic provisioning of n-tier systems
 Experimental evaluation
 Discussion

The Problem
 Dynamically provision servers among n-tier

applications to meet response time requirements

Baseline Approaches
 Idea: Use single tier provisioning

approaches on the n-tier system
 Scale individual tiers separately
 Treat all n-tiers as a black box and scale

together

Baseline: scale individual tiers
 Identify bottleneck tier and increase

provisions to that tier

Baseline: scale individual tiers
 Identify bottleneck tier and increase

provisions to that tier

Baseline: Black-box
 Treat the entire system as a black-box

and provision when end-to-end
response time is below target
 How many servers do we add?
 At which tier(s) do we add servers?
 Not knowing which tier is the bottleneck

can cause problems, what if the bottleneck
tier isn’t replicable?

Baseline: Black-box

Baseline: Black-box

λ=3.5req/s

λ=7req/s

λ=3.5req/s

Cap=40req/s

Cap=30req/s

Provisioning for n-tiers
 Collectively model the effects of all tiers
 3 major components:

 Admission Control
 Predictive Provisioning
 Reactive Provisioning

Provisioning for n-tiers
 One time admission decision per session
 Response time guarantees (SLA)
 Tier-aware

 Number of tiers, current capacities,
constraints on replication

 (Assume load balancer exists per tier)

Design
 Nucleus (monitor)
 Capsule (Application)

 Sentry (admission controller)
 Control Plane (provisions servers)

Provisioning Algorithm
 Input

 Incoming request rate to the system
 Service demand of request

 Output
 Number of servers needed at each tier to

handle the total demand on the system
 2 questions to answer

 How much to provision and when?

How much?
 First, determine the capacity of an individual

server (request rate)
 Treat each server as a G/G/1 queue

How much?
 First, determine the capacity of an individual

server (request rate)
 Treat each server as a G/G/1 queue

 Then, compute the number of servers need
at each tier (in a single step)

!

"
i
=
#
i
$%

$
i
&

'

(
(

)

*
*

"
i
= #

i

1

$
i

$%

&

'

(
(

)

*
*

How much?

!

"
i

#
i

#$

%

is a tier specific constant

is the request rate at tier i

is the request rate to the
system

In practice, we can estimate β by the ratio of requests at the tier and the request
admitted to the system over the last time period

Available Servers
 Severs are provisioned to applications from the

free pool
 If there are not enough servers in the free pool

 Applications that benefit the most are given priority
 Benefit determined by a utility function

 If the free pool is empty, servers can be de-
allocated from over-provisioned (under-loaded)
applications
 Under-loaded if observed / predicted request rates are

below a threshold

When?
 Predictive

 Provision on a time scale of hours and
days

 Reactive
 Provision on a time scale of minutes

Predictive Provisioning
 Provision in advance for predicted

workloads
 Based on previous workloads over the

past hours or days
 Provision for the peak workload seen in

the given time interval
 Use the tail of the arrival rate distribution
 Correct prediction based on previous errors

Predictive Provisioning

Predictive Provisioning

Prediction from past days
(tail of distribution) Error correction

Reactive Provisioning
 Trigger reactive provisioning if…

 error ratio (obs / pred) differs by more than
a given threshold, or

 request* drop rate (at the admission
controller) is larger than a given threshold.

 (Use same equations as predictive
provisioning)

*request drop rate?

Admission Control
 After provisioning is done

 The max workload that has been
provisioned for is reported to the Sentry

 Sentry denies admission to new sessions
if the arrival rate is above the specified max

Experimental Evaluation
 Experiments suggest that predictive

provisioning, reactive provisioning, and
admission control are both necessary
and sufficient mechanisms for
dynamic provisioning of n-tier systems

Discussion
 How do we distribute target response time (R)

over per-tier response times di?
 What about utilization? (Always over-provisioning)
 Why G/G/1 queuing model (M/GI/1 or M/G/1?)
 Stateful sessions need to be serviced by the

same server at each tier.
 Deployment issues:

 Application logs and server logs need to be processed on-line.
 Need (“simple”) modifications to web and application servers

(Apache and Tomcat).
 Have to determine threshold values.
 On-line monitoring of physical resources.

