Dynamic Provisioning of

! Multi-tier Internet Applications

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek
Chandra , and Pawan Goyal

Presentation: Jeff Pound

i Outline

= [he problem

= Baseline approaches

= Dynamic provisioning of n-tier systems
= Experimental evaluation

= Discussion

The Problem

= Dynamically provision servers among n-tier
applications to meet response time requirements

\

sessions sessions

(
T ’ Sentry Sentry
]
v

Y
L L L L L L

Tierl Tier2 Tier3 Tierl Tier2 Tier3
Application A Application B

Free Pool

i Baseline Approaches

= Idea: Use single tier provisioning
approaches on the n-tier system
= Scale individual tiers separately

= |reat all n-tiers as a black box and scale
together

Baseline: scale individual tiers

= ldentify bottleneck tier and increase

provisions to that tier

Cap=15 reqg/s Cap=10 reqg/s

A=14 req/s . req/s L
|

-

10 req/s

Tier 1 Tier 2

drops 4 req/s

Cap=10.5 req/s

10 req/s

—>

Tier 3

Baseline: scale individual tiers

= ldentify bottleneck tier and increase
provisions to that tier

Cap=15 reqg/s

A=14 req/s L

Tier 1

1 1

\

Tier 2

\

Cap=20 reqg/s

Cap=10.5 req/s

\\\14 req/s 10.5 reg/s
S >
Tier 3
y

drops 3.5 req/s

i Baseline: Black-box

= [reat the entire system as a black-box
and provision when end-to-end
response time is below target
= How many servers do we add?
= At which tier(s) do we add servers?

= Not knowing which tier is the bottleneck
can cause problems, what if the bottleneck
tier isn’t replicable?

A=14 req/s
!

Baseline: Black-box

Cap=15 req/s

A=14 req/s o

Tier 1

Cap=20 req/s

L
Cap=10.5 req/s
P diaes
14 req/s s req/s
-
T

Tier 3

Tier 2 drops 3.5 req/s

10.5 req/s

—>

Baseline: Black-box

Cap=40req/s
.
Cap=30req/s
v\ A=3.5req/s
A=14 req/s .
. Cap=10.5 req/s
A=Treq/s | | “~a |
— .
7=3.5reqs ’ 10.5req/s | 10.5 reg/s
L
R e Tier 3 |
o drops 3.5 req/s
E— - .
Tier 1
Tier 2

i Provisioning for n-tiers

= Collectively model the effects of all tiers

= 3 major components:
= Admission Control
= Predictive Provisioning
= Reactive Provisioning

i Provisioning for n-tiers

= One time admission decision per session
= Response time guarantees (SLA)

= [ler-aware

= Number of tiers, current capacities,
constraints on replication

= (Assume load balancer exists per tier)

Design

= Nucleus (monitor) = Sentry (admission controller)
= Capsule (Application) = Control Plane (provisions servers)
Nucleus Capsule
. L
sessions ST
| m—— |

; Sentry % OS kernel

Tier1 Tier2 Tier3 Tier1 Tier2
Application A ApplicationB Free Pool

i Provisioning Algorithm

= |nput
= Incoming request rate to the system
= Service demand of request

o OUtpUt

= Number of servers needed at each tier to
handle the total demand on the system

= 2 questions to answer
= How much to provision and when"?

i How much?

= First, determine the capacity of an individual
server (request rate)
= Treat each server as a G/G/1 queue

02+0§ 1
. > : a
N = [SZJF 2'(dz'—8z')]

i How much?

= First, determine the capacity of an individual
server (request rate)
= Treat each server as a G/G/1 queue
Y o2+ o} -t
= [SHF 2'(di—Si)]
= [hen, compute the number of servers need
at each tier (in a single step)

o ﬁz)\’r
=5

n,

n,

How much?

Bt
AZ

1 At

p

‘A Z

ﬁi IS a tier specific constant

)Ll, Is the request rate at tier j

AT

IS the request rate to the
Z system

In practice, we can estimate 3 by the ratio of requests at the tier and the request
admitted to the system over the last time period

i Available Servers

= Severs are provisioned to applications from the
free pool

= If there are not enough servers in the free pool
= Applications that benefit the most are given priority
= Benefit determined by a utility function

= If the free pool is empty, servers can be de-
allocated from over-provisioned (under-loaded)
applications

= Under-loaded if observed / predicted request rates are
below a threshold

i When?

s Predictive

= Provision on a time scale of hours and
days

s Reactive
= Provision on a time scale of minutes

i Predictive Provisioning

= Provision in advance for predicted
workloads

= Based on previous workloads over the
past hours or days

= Provision for the peak workload seen in
the given time interval
= Use the tail of the arrival rate distribution
= Correct prediction based on previous errors

Predictive Provisioning

arrivals observed during noon—I1PM

v

Sunday histogram

SN num. arrivals
AN v

Monday

Pr ,I"I prob. distrib.

__ num. arrivals \ . .
Tuesday \-__1_/\1lgh percentile

AN -

{ recent trends (predicted demand

Today correction

Hourly session arrival rate

f 1 = v
Midnight Noon 11 PM prediction for noon—1PM today

i Predictive Provisioning

maz(0, Aobs () — Apred(?))

Prediction from past days

(tail of distribution) Error correction

i Reactive Provisioning

= Trigger reactive provisioning if...

= error ratio (obs / pred) differs by more than
a given threshold, or

= request” drop rate (at the admission
controller) is larger than a given threshold.

= (Use same equations as predictive
provisioning)

*request drop rate?

i Admission Control

= After provisioning is done

= The max workload that has been
provisioned for is reported to the Sentry

= Sentry denies admission to new sessions
iIf the arrival rate is above the specified max

i Experimental Evaluation

= Experiments suggest that predictive
provisioning, reactive provisioning, and
admission control are both necessary
and sufficient mechanisms for

dynamic provisioning of n-tier systems

Discussion

= How do we distribute target response time (R)
over per-tier response times d.?

= What about utilization? (Always over-provisioning)
= Why G/G/1 queuing model (M/GI/1 or M/G/17)

= Stateful sessions need to be serviced by the
same server at each tier.

= Deployment issues:

= Application logs and server logs need to be processed on-line.

= Need (“simple”) modifications to web and application servers
(Apache and Tomcat).

= Have to determine threshold values.
= On-line monitoring of physical resources.

