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The Problem

= Dynamically provision servers among n-tier
applications to meet response time requirements
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i Baseline Approaches

= Idea: Use single tier provisioning
approaches on the n-tier system
= Scale individual tiers separately

= |reat all n-tiers as a black box and scale
together




Baseline: scale individual tiers

= ldentify bottleneck tier and increase

provisions to that tier
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Baseline: scale individual tiers

= ldentify bottleneck tier and increase
provisions to that tier
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i Baseline: Black-box

= [reat the entire system as a black-box
and provision when end-to-end
response time is below target
= How many servers do we add?
= At which tier(s) do we add servers?

= Not knowing which tier is the bottleneck
can cause problems, what if the bottleneck
tier isn’t replicable?
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Baseline: Black-box
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i Provisioning for n-tiers

= Collectively model the effects of all tiers

= 3 major components:
= Admission Control
= Predictive Provisioning
= Reactive Provisioning




i Provisioning for n-tiers

= One time admission decision per session
= Response time guarantees (SLA)

= [ler-aware

= Number of tiers, current capacities,
constraints on replication

= (Assume load balancer exists per tier)




Design

= Nucleus (monitor) = Sentry (admission controller)
= Capsule (Application) = Control Plane (provisions servers)
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i Provisioning Algorithm

= |nput
= Incoming request rate to the system
= Service demand of request

o OUtpUt

= Number of servers needed at each tier to
handle the total demand on the system

= 2 questions to answer
= How much to provision and when"?




i How much?

= First, determine the capacity of an individual
server (request rate)
= Treat each server as a G/G/1 queue
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i How much?

= First, determine the capacity of an individual
server (request rate)
= Treat each server as a G/G/1 queue
Y o2+ o} -t
= [SHF 2'(di—Si)]
= [hen, compute the number of servers need
at each tier (in a single step)
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i Available Servers

= Severs are provisioned to applications from the
free pool

= If there are not enough servers in the free pool
= Applications that benefit the most are given priority
= Benefit determined by a utility function

= If the free pool is empty, servers can be de-
allocated from over-provisioned (under-loaded)
applications

= Under-loaded if observed / predicted request rates are
below a threshold




i When?

s Predictive

= Provision on a time scale of hours and
days

s Reactive
= Provision on a time scale of minutes




i Predictive Provisioning

= Provision in advance for predicted
workloads

= Based on previous workloads over the
past hours or days

= Provision for the peak workload seen in
the given time interval
= Use the tail of the arrival rate distribution
= Correct prediction based on previous errors




Predictive Provisioning
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i Predictive Provisioning
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i Reactive Provisioning

= Trigger reactive provisioning if...

= error ratio (obs / pred) differs by more than
a given threshold, or

= request” drop rate (at the admission
controller) is larger than a given threshold.

= (Use same equations as predictive
provisioning)

*request drop rate?



i Admission Control

= After provisioning is done

= The max workload that has been
provisioned for is reported to the Sentry

= Sentry denies admission to new sessions
iIf the arrival rate is above the specified max




i Experimental Evaluation

= Experiments suggest that predictive
provisioning, reactive provisioning, and
admission control are both necessary
and sufficient mechanisms for

dynamic provisioning of n-tier systems




Discussion

= How do we distribute target response time (R)
over per-tier response times d.?

= What about utilization? (Always over-provisioning)
= Why G/G/1 queuing model (M/GI/1 or M/G/17)

= Stateful sessions need to be serviced by the
same server at each tier.

= Deployment issues:

= Application logs and server logs need to be processed on-line.

= Need (“simple”) modifications to web and application servers
(Apache and Tomcat).

= Have to determine threshold values.
= On-line monitoring of physical resources.



