
Dynamic Provisioning of
Multi-tier Internet Applications

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek
Chandra , and Pawan Goyal

Presentation: Jeff Pound

Outline
 The problem
 Baseline approaches
 Dynamic provisioning of n-tier systems
 Experimental evaluation
 Discussion

The Problem
 Dynamically provision servers among n-tier

applications to meet response time requirements

Baseline Approaches
 Idea: Use single tier provisioning

approaches on the n-tier system
 Scale individual tiers separately
 Treat all n-tiers as a black box and scale

together

Baseline: scale individual tiers
 Identify bottleneck tier and increase

provisions to that tier

Baseline: scale individual tiers
 Identify bottleneck tier and increase

provisions to that tier

Baseline: Black-box
 Treat the entire system as a black-box

and provision when end-to-end
response time is below target
 How many servers do we add?
 At which tier(s) do we add servers?
 Not knowing which tier is the bottleneck

can cause problems, what if the bottleneck
tier isn’t replicable?

Baseline: Black-box

Baseline: Black-box

λ=3.5req/s

λ=7req/s

λ=3.5req/s

Cap=40req/s

Cap=30req/s

Provisioning for n-tiers
 Collectively model the effects of all tiers
 3 major components:

 Admission Control
 Predictive Provisioning
 Reactive Provisioning

Provisioning for n-tiers
 One time admission decision per session
 Response time guarantees (SLA)
 Tier-aware

 Number of tiers, current capacities,
constraints on replication

 (Assume load balancer exists per tier)

Design
 Nucleus (monitor)
 Capsule (Application)

 Sentry (admission controller)
 Control Plane (provisions servers)

Provisioning Algorithm
 Input

 Incoming request rate to the system
 Service demand of request

 Output
 Number of servers needed at each tier to

handle the total demand on the system
 2 questions to answer

 How much to provision and when?

How much?
 First, determine the capacity of an individual

server (request rate)
 Treat each server as a G/G/1 queue

How much?
 First, determine the capacity of an individual

server (request rate)
 Treat each server as a G/G/1 queue

 Then, compute the number of servers need
at each tier (in a single step)

!

"
i
=
#
i
$%

$
i
&

'

(
(

)

*
*

"
i
= #

i

1

$
i

$%

&

'

(
(

)

*
*

How much?

!

"
i

#
i

#$

%

is a tier specific constant

is the request rate at tier i

is the request rate to the
system

In practice, we can estimate β by the ratio of requests at the tier and the request
admitted to the system over the last time period

Available Servers
 Severs are provisioned to applications from the

free pool
 If there are not enough servers in the free pool

 Applications that benefit the most are given priority
 Benefit determined by a utility function

 If the free pool is empty, servers can be de-
allocated from over-provisioned (under-loaded)
applications
 Under-loaded if observed / predicted request rates are

below a threshold

When?
 Predictive

 Provision on a time scale of hours and
days

 Reactive
 Provision on a time scale of minutes

Predictive Provisioning
 Provision in advance for predicted

workloads
 Based on previous workloads over the

past hours or days
 Provision for the peak workload seen in

the given time interval
 Use the tail of the arrival rate distribution
 Correct prediction based on previous errors

Predictive Provisioning

Predictive Provisioning

Prediction from past days
(tail of distribution) Error correction

Reactive Provisioning
 Trigger reactive provisioning if…

 error ratio (obs / pred) differs by more than
a given threshold, or

 request* drop rate (at the admission
controller) is larger than a given threshold.

 (Use same equations as predictive
provisioning)

*request drop rate?

Admission Control
 After provisioning is done

 The max workload that has been
provisioned for is reported to the Sentry

 Sentry denies admission to new sessions
if the arrival rate is above the specified max

Experimental Evaluation
 Experiments suggest that predictive

provisioning, reactive provisioning, and
admission control are both necessary
and sufficient mechanisms for
dynamic provisioning of n-tier systems

Discussion
 How do we distribute target response time (R)

over per-tier response times di?
 What about utilization? (Always over-provisioning)
 Why G/G/1 queuing model (M/GI/1 or M/G/1?)
 Stateful sessions need to be serviced by the

same server at each tier.
 Deployment issues:

 Application logs and server logs need to be processed on-line.
 Need (“simple”) modifications to web and application servers

(Apache and Tomcat).
 Have to determine threshold values.
 On-line monitoring of physical resources.

