
1

Optimization of Query Streams 
Using Semantic Prefetching

Ivan T. Bowman
School of Computer Science

University of Waterloo

Kenneth Salem
School of Computer Science

University of Waterloo

Presented By : Ahmed A. Soror

1. Behind The Scenes

Query Streams 
A request stream of open, fetch, close.
Single stream/connection.

Query Patterns
Batches Nesting

Data Structure 
Correlation



2

1. Behind the Scenes

Optimization
Rewriting Semantically related query.
Predictively execute new queries.
Reduce communication and system interface 
layers latency and overhead.

Why not manually ..?
Dynamically changing semantics.
Manual tuning costs.
Decoupling implementation from application logic.

1. Behind the Scenes

Semantic Prefetching
Execute predicted semantic (context 
related) queries before actual call.

Updates after prefetches
Same connection : invalidate prefetches
Other connections : serializable isolation 
level



3

2. Introducing .. SCALPEL

A system for detecting and optimizing patterns 
of repeated requests within a query stream.

SCALPEL 
@ Training

Application’s 
database 

interface calls

Forwarded calls
+

Request rewrite 
rules

SCALPEL 
@ Runtime

Application’s 
database 

interface calls

matching rules 
rewritten queries

3. Training Scalpel
Context Detection

Monitor application requests 
stream.
Track evolving request 
context.

Pattern detection
Detect correlation between 
queries and their context

Pattern optimizer
Rewrite cost efficient 
patterns



4

3. Training Scalpel (Example)

Training 
Process

Initial application side Query Optimized Combined Query

3. Training Scalpel (Example)

Context
Detection

P.D

[Q1],Q2



5

3. Pattern Optimizer

Plan generator
Contexts identified may be related to on another.
Enumerate all possible axecution alternatives

Nested Execution (as-is)
Partitioned Execution (rewritten inner query hash joined 
with outer query at client)
Unified execution (join inner query with its context)

Ranking Module
Response time cost based ranking

3. Pattern Optimizer 
(Plan generator)



6

3. Pattern Optimizer 
(Ranking Module)

4. Running Scalpel

On context detection 
Rewriter issues new 
optimized query.
Further, Scalpel 
intercepts predicted 
calls and replies with 
prefetched results



7

5. Experiments

Effect of client predicate selectivity

For small selectivity, 
nested is most 
efficient.
Hash strongly 
depends on P0
selectivity.

Experiments

Execution Costs
Nested execution is 
optimal for local 
connection.
Server costs are 
50% lower with 
joined variants.
Nested outperformed 
in deployments with 
higher network 
latency.



8

Concluding remarks
Tolerated overhead.
Optimizing stream instead of individual requests.
Providing more flexibility to the optimizer.
Multi-query optimization.
Is Nesting + stored procedure competitive..?
Different cost models (resource consumption)
Why scalpel..?
Other partitioning, join techniques 
Why log the most recently fetched query results..?
How long does it take to train it..?

Thank You


