Optimization of Query Streams
* Using Semantic Prefetching

Ivan T. Bowman Kenneth Salem
School of Computer Science School of Computer Science
University of Waterloo University of Waterloo

Presented By : Ahmed A. Soror

i 1. Behind The Scenes

= Query Streams
= A request stream of open, fetch, close.
= Single stream/connection.

= Query Patterns

Data Structure
Correlation

Batches Nesting

i 1. Behind the Scenes

= Optimization
= Rewriting Semantically related query.
= Predictively execute new queries.
= Reduce communication and system interface
layers latency and overhead.
= Why not manually ..?
= Dynamically changing semantics.
= Manual tuning costs.
= Decoupling implementation from application logic.

i 1. Behind the Scenes

= Semantic Prefetching

= Execute predicted semantic (context
related) queries before actual call.

= Updates after prefetches

= Same connection : invalidate prefetches

= Other connections : serializable isolation
level

i 2. Introducing .. SCALPEL

= A system for detecting and optimizing patterns
of repeated requests within a query stream.

Application’s
atzbase | I

interface calls

SCALPEL
@ Training

Forwarded calls

)

Request rewrite
rules

Application’s matching rules
database ‘ ‘ rewritten queries

interface calls

i 3. Training Scalpel

= Context Detection

= Monitor application requests

stream.
= Track evolving request
context.

= Pattern detection

Context

i

Detection 0

Client
Application

pen, Fetch, Close

Pattern
Optimizer

Pattern

—]
Detection

Menitor Calls
DBMS

= Detect correlation between

queries and their context

= Pattern optimizer

= Rewrite cost efficient
patterns

DB Client
Library

Contexts +
Rewrites

Operating System

i 3. Training Scalpel (Example)

function get_openinvoices(cust_id, currency)
// this is Q1
c1 = open(SELECT id, curr, transdate

FROM ar
WHERE customer_id = :cust_id
AND ar.curr = :currency

AND NOT ar.amount = ar.paid
ORDER BY id)
while(r1 = fetch(cl))

if(currency != defaultcurrency)
rate = get_exchangerate(ri.curr,
rl.transdate);
end

function get_exchangerate(curr, transdate)
// this is Q2
r2 = fetch(SELECT exchangerate FROM exchangerate
WHERE curr = :curr
AND transdate = :transdate)
return r2.exchangerate;
end

Initial application side Query

SELECT id, curr, exchangerate, ...
FROM ar LEFT JOIN exchangerate er
ON ar.curr = er.curr
AND ar.transdate=er.transdate

WHERE customer_id = :cust_id

AND ar.curr = :currency

AND NOT ar.amount = ar.paid
ORDER BY id

Optimized Combined Query

& 3. Training Scalpel (Example)

Trace

OPEN(Qq(cust],CDN$)) — ¢l
Ferci(el) — (3305,CDN$,30,/10/03)
OPEN((2(CDNS$,30/10/03)) — ¢2
FETCH(c2) — 1.4304

CLOSE(c2)

Frrcn(el) — (3307,CDN$.30,/10/03)
OPEN((Q2(CDNS$,30/10/03)) — ¢2
FETCH(c2) — 1.4304

CLOSE(c2)

FETCH(cl) — (3308,CDN$,31/10/03)
OPEN((2(CDNS$,31/10/03)) — ¢2
FETCH(c2) — 1.4522

CLOSE(c2)
CLOSE(c1)

Query

Context || Parameter Context

0y (cust]l,CDNS - - -)

oy (cust1,CDNS, 3305,CDNS.30/10,/03)

Q1,Q2 || (cust1,CDNS,3305,CDNS,30/10/03),(CDN$,30/10/03.-)
Q:1Q2 | (cust1 CDNS,3305,CDNS,30/10/03),(CDN$,30/10,/03,1.4304)
Q (cust1,CDNS,3305,CDN$,30/10/03)

& (cust1,CDNS,3307,CDN§,30/10/03)

Q1,02 || (cust1,CDNS,3307,CDNS,30/10/03),(CDN$,30/10/03-)
Q1,02 || (cust1,CDNS 3307, CDN§,30/10/03), (CDNS$,30/10/03,1.4304)
Q (cust1,CDNS,3307,CDN$,30/10/03)

o (cust1,CDNS,3308,CDNS,31/10/03)

Q1,Q2 || (cust1,CDNS,3308,CDNS,31/10/03),(CDNS,31/10/03-)
@10z | (cust1 CDNS,3308,CDNS,31/10/03),(CDN$,31/10/03,1.4522)
Q (cust1,CDNS,3308,CDN§,31/10/03)

[(?1]!(?2

3. Pattern Optimizer

= Plan generator

= Contexts identified may be related to on another.

= Enumerate all possible axecution alternatives
= Nested Execution (as-is)

= Partitioned Execution (rewritten inner query hash joined
with outer query at client)

= Unified execution (join inner query with its context)

= Ranking Module

= Response time cost based ranking

3. Pattern Optimizer
(Plan generator)

Nested Execution Plan

[QRST] N

N T T N

[Q_RST.Q_XYZ] [Q RST.Q abcdef
~
[Q RST.Q X¥Z.Q 1234]

Join (Unified) Execution Plan

[Q_RST] JR

m " ™~_ 1
[Q_RST.Q_XYZ] [Q_RST.Q shcdsd]

[Q RST,Q X¥YZ,.Q 1234]

Hash (Partitioned) Execution Plan
[Q_BsT] N

H H
[Q_RST,Q_XYZ] [Q_RST.Q_sbcdef]

H
[Q_RST.Q_X¥Z.Q 1234]
Hybrid Jein/Hash Exectuion Plan

[Q_EsT] JR

H " ™_ 1
[Q_RST.Q_XYZ] [Q_RST.Q_sheder]

[Q_RST.Q XYZ.Q 1234]

3. Pattern Optimizer
i (Ranking Module)

CoxTEXT-CosT(C) = OPENS(C) x CosT(Q)')

|1 : 0=1Q
OpENS(C) —{ P

P(C) = K(C)A(C)

(C)]Qa| OPENS(Co) = C'=[C5, Q0]

ConrexT-Cost(C) =
Po(C)OpENs(Co) [CosT(Q") + || Haaa] + Hana OPENS(C)

CosT(Q) = U+ SERVER-COST(Q)
+ CoMM-CosT(|QQ|, BYyTES(Q))

Quantity Source Description
SERVER-COST((J] RDBMS | Server costs for € in seconds
[=]] RDBMS | Rows returned by @
BYTES(Q) RDBMS Average row length for @@
CoMM-COST(N, B) | Scalpel Communication latency for
N rows of B hytes
Uo Scalpel Owerhead of a single request
Haaa Scalpel Cost of adding to hash table
Hsana Scalpel Cost of finding in hash table
Fn, P Scalpel Selectivity of client predi-

cates

i 4. Running Scalpel

= On context detection
Rewriter issues new
optimized query.

= Further, Scalpel
intercepts predicted
calls and replies with
prefetched results

Client
Application
Context T

Detection \ Open, Fetch, Close

Rewriter [#—»| Monitor Calls

a DBMS
\‘ DB Client

Contexts + Library
Rewrites
Operating System

i 5. Experiments

= Effect of client predicate selectivity

500

= For small selectivity, +Nested #Join e
nested is most ~ 7 aHash (L) 2 Hash (P.1) 3%
efficient. E ' : . ot

o : Ay :

- £ ! Lot

gashs;ronglg izuu A g Dodiiooninen
€pends on F, 100 ||-l-l-’-i—iii-ﬁ-g-g-!-#ii-ﬁ----’-'-'-"

selectivity. gt botos
0 02 04 0.6 08 1

i Experiments

= Execution Costs
= Nested execution is
optimal for local
connection. - -
= Server costs are Yoo Een wen o men e
50% |OW€r With (a) Shared Memory (LCL) (b) 100Mbps (LAN)
joined variants.
= Nested outperformed .
in deployments with 0 "’
higher network B
latency. == 1
N] HE1) H1P N T H®P HAP

() 11Mbps (WiFi) (d) 1Mbps (WAN)

i Concluding remarks

Tolerated overhead.
. Optlmlzmg stream instead of individual requests.
= Providing more flexibility to the optimizer.
= Multi-query optimization.
= Is Nesting + stored procedure competitive..?
= Different cost models (resource consumption)
= Why scalpel..?
= Other partitioning, join techniques
= Why log the most recently fetched query results..?
= How long does it take to train it..?

Thank You

