
1

Automating Physical Database Design in
a Parallel Database

Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman

Presentation: Mumtaz Ahmad

Scope

Shared-nothing Parallel Architecture

Horizontal Partitioning of Base Data

DB2 Data Partitioning Advisor
Hash-based Partitioning
Node Groups

2

Problem

Given: Query Workload, Database Statistics, Default Partitions

Find: The optimal Partition for each table

Hardness:
Different queries, best partitions differ
Same query, multiple tables join on different columns

Why ?
Local joins, aggregation etc.
Load Balancing
Overall Optimal Performance

Solution Approach

Key Idea
Same general framework as used for index /materialized view
selection tools – apply to partitioning problem
Query Optimizer and its cost model has evolved well
Ask it for recommendation
Supplement the recommendations
Search the candidate plans space (using rank-based enumeration)

Finally, any plan is evaluated by Query Optimizer

3

Architecture

Recommend Partition

Find optimal partition for each table for each query in
work load

Candidate Partitions considered
Columns in equality join; R.a = S.a
Grouping Columns; Group by R.a
Equality Predicate ; R.a = “123”
Replication
NodeGroups; Default, Existing

4

Recommend Partition

Generate all combinations from candidate partitions

Regular task of selecting best plan

Write partitions in best plan to
CANDIDATE_PARTITION table along with benefit

Expand Partition

Existing Partition, if missed

Subsumed Partitions
Q1: <T.a, T.b> ; Q2: <T.a, T.c>
Consider <T.a> as well

5

Evaluating Partitions

Find: Coptimal , where C = (c1, c2,…, cn) and ci є (p1,
p2,…, pm) for table i , for entire workload
Problem: All candidate plans; large search space;
time constraint
Use Rank-Based Enumeration

Start with a root consisting of partitions with maximum benefit,
expand to children that differ in one partition, pick next
configuration based on a ranking function
Rank_Best (C) = -Cost (C’) – P.benefit*

(P.tablecard/max_tablecard)1/2

Cost of parent, benefit of difference from its parent, size of table

Evaluating Partitions

Call the Query Optimizer to evaluate the selected
configuration for entire workload; returns cost

If better than previous, keep it

Time constraint

6

Experimental Results

Customer Database with 50 queries, 15 tables,
1-5 partitions /table recommended

500 configurations
Rank_Best converges fastest
Speed up is 22%, 11 out of 15 partitions unchanged

Related Work

Partitioning
General problem is NP-Hard
Build a cost model, greedy solution

“An actual design tool should use the actual optimizer” [4].

Load Balancing
Can supplement Physical database design at run time.
Actual workload mix keeps on changing
Strategies like least utilized processors, adaptive least utilized
processors, degree of join parallelism [3].

7

Discussion
Benefit of a query assigned to every partition

No way to measure contribution of each table.
So if only one table has different partition and query benefits, the

benefit value is assigned to unchanged partitions as well
Why not more than one partitions; its just replication
Multiple calls to query Optimizer during evaluation
No comparison to the results of other cost models
Why not external tool or cost model during expansion phase
Cache from recommend mode may be used during evaluation
Assumptions for Cost derivation for “virtual” partitions
Paper is well written.

References

[1] Guy M. Lohman, “A DB2 that manages itself ? ”, Tutorial at VLDB
2004.

[2] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman,
“Automating Physical Database Design in a Parallel Database”, SIGMOD
2002.

[3] R. Marek, E. Rahm, “Analysis of Dynamic Load Balancing Strategies for
Parallel Shared Nothing Database Systems”, VLDB 1993.

[4] D. Sacca, G. Wiederhold, “Database Partitioning in a cluster of
processors”, TODS 1985.

