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Multiagent Reinforcement Learning
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Stochastic Games (think of this as an n-agent MDP)
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Stochastic Game

* Normally represented by a tuple SG=< N,S,A,R, T,y >
* N:set of agents
* S:state space
* A=A, x ..x A,: Joint action space
* R=R;x... xR, : joint reward function
* R(s,a) fora=(a,,...,.a,) in A
* T: transition function T(s’,a, s) = P(s’|s, a) for a=(a,,...,a,,)
e y:discount factorO<y <1
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Stochastic Games (think of this as an n-agent MDP)
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Stochastic Game

* Normally represented by a tuple SG=<N,S,A,R T,y >
* N:set of agents
S: state space
* A=A, x..x A,:joint action space
* R=R;x... xR, :joint reward function
* R{(s,a)fora=(a,,...,a,) in A
T: transition function T(s',a, s) = P(s’|s, a) for a=(a,...,a,)
y:discount factorO<y <1

Policy: 7;: S — AAi

Goal: Find a policy m "= (], ..., 7}, ) such that w} = arg max Y.y Y E[r (s, a)]
where expectation is conditioned on joint policy
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Playing a Stochastic Game

* Players choose their actions at the same time
* No communication
* No observation of the other agents’ actions at that time step

* At each stage, players are facing a normal form game
* Q-values of the current state and joint action are the payoffs for the agents

 Stochastic game is a generalization of a repeated game
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Optimal Policies

* Recall, agents are learning in a multi-agent setting

e Optimal policies should correspond to some equilibrium of the stochastic
game

* Nash equilibrium is one example

e Value function
Zv x|Tit|So = 8,

* Nash Equilibrium
i ’W_i)(S) > V-(m’ﬁ_i)(S),VS € 5,Vi € N,Vm; # m;

1 — (5
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Independent Learners

* Naive approach: Each agent uses Q-learning directly, assuming the
other agents’ are part of the environment

Qi(s, ai) < Qi(s,a;) + a(r; +ymax Qi(s',a;) — Qi(s,a;))

* Pro: Simple, easy to apply

* Cons:
* Non-stationary transition and reward models
* Does not work well against opponents playing complex strategies
* No convergence guarantees
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Opponent Modelling

* We need to have some idea what other agents are doing
* (but this is not directly observable at time t)

* Agents maintain a belief over over the actions taken by other agents
* Opponent modelling

* Types of opponent modelling
* Fictitious play
e Solving unique equilibrium in the stage game
* Gradient based methods
e Bayesian approaches



Fictitious Play
* Each agent assumes all others are playing a stationary strategy

* Agents maintain a count of the number of times another agent has
taken action a; in state s

nt(s,a;) < 1+n'""(s,a;),¥j,Vi € N
* Agents update and sample from their belief about this strategy at

each stage .

- ni(s,a;)
" () ~ :

Za; n2(87 CL;)

e Agents best-respond according to this belief




Cooperative Stochastic Games

* Normally represented by a tuple SG=< N,S,A,R, T,y >
* N:set of agents
* S:state space
* A=A, x ..x A,: Joint action space
* R=R;x... XR,: joint reward function
* Ri(s,a)=R(s,a) for a=(a,,...,a,) in A
* T: transition function T(s’,a, s) = P(s’|s, a) for a=(a,,...,a,,)
e y:discount factorO<y <1
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Optimal Policies for Cooperative Games

* Pareto dominating (Nash) equilibrium

* Even though rewards/payoffs of agents are aligned, there is still a
coordination problem
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Learning in Cooperative Stochastic Games

 Joint Action Learner (JAL) or Joint Q Learning (JQL)
* Must respond to the environment as well as the other agents.

* Similar to Q-learning by agents also include other agents’ actions in the update

Q (S ai, ) — QZ(S i, 4 ) + a(rl —|—7maXQ (870‘;70’/—1) o Qi(s7a’iaa’—i))

* Two objectives:
* Agent: find the optimal policy for best response
» System: Find the NE of the stochastic game (or Nash Q-function of the game)

* Nash Q-function: agent’s discounted future rewards when all agents follow the
NE policy
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Joint Q-Learning

Initialize Q-values

Repeat until convergence of Q values
Repeat for each agent i
* Select and execute a,
* Observes’r, a;
* Update counts for states/joint actions: n(s,a) + 1 + n(s,a) note that a is the joint action
* Update learningrate: « < 1/n(s,a)
« Update counts for states/individual agent actions: 7i(s,a;) < 1 +n;(s,a;)
* Update beliefs:
i (s) ~
* Update Q-value:

Qz(s a;, a ) — Qz(s a;, a )—|—CM(T1—|—’7maX 4 Qi(s,aa;nui_i(sl))_Qi(S?ai?a—i))

n; S7aj)

Zag ni(87 CL;)
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Convergence of Joint Q-Learning

* If the game is finite, then play will converge to true response to other
agents in self-play
 Self-play: all agents use the same algorithm

* Joint Q-learning converges to Nash Q-values in cooperative stochastic
games
* Every state is visited infinitely often (due to exploration)

* Learning rate is decreased fast enough but not too fast (same conditions as
for Q-learning)

* In cooperative stochastic games, Nash-Q values are unique (unique
equilibrium point in terms of utilities)



Joint Q-Learning

Initialize Q-values

Repeat until convergence of Q values

Repeat for each agent i

* Select and execute a3,

* Observes’r, a;

* Update counts for states/joint actions: n(s,a) + 1 + n(s,a) note that a is the joint action

* Update learningrate: « < 1/n(s,a)

« Update counts for states/individual agent actions: 7i(s,a;) < 1 +n;(s,a;)

* Update beliefs:
pi(s) ~

* Update Q-value:

Qz(s a;, a ) — Qz(s a;, a )—|—oz(m—|—7max 4 Qi(slaa;7M;i(S/))_Qi(37ai7a—i))

n; S7aj)

Zag ni(sv CL;)
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Exploration-Exploitation Tradeoft

* Epsilon-greedy

* Like in the single case, but now you are taking the best-response action given
your beliefs

e Boltzmann exploration

e “Temperature” parameter T (high T increases randomness, low T is less
random)

Qq;(S,a?;,,UJi_i(S))
é T

P(a) =

Q;(s,al,u; "(s))

Za,’ c L
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Summary

e Stochastic Games
* Fictitious Play
* How to learn in Cooperative Stochastic Games
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