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Multiagent Reinforcement Learning
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Stochastic Games (think of this as an n-agent MDP)
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Stochastic Game

• Normally represented by a tuple SG=< N,S,A,R,T,𝛾 >
• N: set of agents

• S: state space

• A=A1 x …x An: joint action space

• R=R1x… xRn: joint reward function
• Ri(s,a) for a=(a1,…,an) in A

• T: transition function T(s’,a, s) = P(s’|s, a) for a=(a1,…,an)

• 𝛾: discount factor 0< 𝛾 ≤ 1
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Stochastic Games (think of this as an n-agent MDP)
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A={Agent 1, Agent 2}
Two states
Ai={A,B,C,D}
Rewards: R1(s1, (A,A))=-5



Stochastic Game

• Normally represented by a tuple SG=< N,S,A,R,T,𝛾 >
• N: set of agents
• S: state space
• A=A1 x …x An: joint action space
• R=R1x… xRn: joint reward function

• Ri(s,a) for a=(a1,…,an) in A

• T: transition function T(s’,a, s) = P(s’|s, a) for a=(a1,…,an)
• 𝛾: discount factor 0< 𝛾 ≤ 1
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Policy: 𝜋𝑖: 𝑆 → Δ𝐴𝑖

Goal: Find a policy 𝜋
∗
= (𝜋1

∗, … , 𝜋𝑛
∗  ) such that 𝜋𝑖 

∗ = arg max σ 𝛾𝑡 σ 𝐸[𝑟(𝑠, 𝑎)] 
where expectation is conditioned on joint policy 𝜋



Playing a Stochastic Game

• Players choose their actions at the same time
• No communication

• No observation of the other agents’ actions at that time step

• At each stage, players are facing a normal form game
• Q-values of the current state and joint action are the payoffs for the agents

• Stochastic game is a generalization of a repeated game
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Optimal Policies
• Recall, agents are learning in a multi-agent setting

• Optimal policies should correspond to some equilibrium of the stochastic 
game

• Nash equilibrium is one example
• Value function 

• Nash Equilibrium
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Independent Learners

• Naïve approach: Each agent uses Q-learning directly, assuming the 
other agents’ are part of the environment

• Pro: Simple, easy to apply

• Cons:
• Non-stationary transition and reward models
• Does not work well against opponents playing complex strategies
• No convergence guarantees
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Opponent Modelling

• We need to have some idea what other agents are doing
• (but this is not directly observable at time t)

• Agents maintain a belief over over the actions taken by other agents
• Opponent modelling

• Types of opponent modelling
• Fictitious play

• Solving unique equilibrium in the stage game

• Gradient based methods

• Bayesian approaches
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Fictitious Play
• Each agent assumes all others are playing a stationary strategy

• Agents maintain a count of the number of times another agent has 
taken action aj in state s

• Agents update and sample from their belief about this strategy at 
each stage 

• Agents best-respond according to this belief
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Cooperative Stochastic Games

• Normally represented by a tuple SG=< N,S,A,R,T,𝛾 >
• N: set of agents

• S: state space

• A=A1 x …x An: joint action space

• R=R1x… xRn: joint reward function
• Ri(s,a)=R(s,a) for a=(a1,…,an) in A

• T: transition function T(s’,a, s) = P(s’|s, a) for a=(a1,…,an)

• 𝛾: discount factor 0< 𝛾 ≤ 1
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Optimal Policies for Cooperative Games

• Pareto dominating (Nash) equilibrium

• Even though rewards/payoffs of agents are aligned, there is still a 
coordination problem
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Learning in Cooperative Stochastic Games

• Joint Action Learner (JAL) or Joint Q Learning (JQL)

• Must respond to the environment as well as the other agents.

• Similar to Q-learning by agents also include other agents’ actions in the update

• Two objectives:
• Agent: find the optimal policy for best response

• System: Find the NE of the stochastic game (or Nash Q-function of the game)

• Nash Q-function: agent’s discounted future rewards when all agents follow the 
NE policy
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Joint Q-Learning
Initialize Q-values

Repeat until convergence of Q values
Repeat for each agent i

• Select and execute ai

• Observe s’, ri, a-i

• Update counts for states/joint actions:

• Update learning rate:

• Update counts for states/individual agent actions:

• Update beliefs:

• Update Q-value:
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Convergence of Joint Q-Learning

• If the game is finite, then play will converge to true response to other 
agents in self-play
• Self-play: all agents use the same algorithm

• Joint Q-learning converges to Nash Q-values in cooperative stochastic 
games
• Every state is visited infinitely often (due to exploration)
• Learning rate is decreased fast enough but not too fast (same conditions as 

for Q-learning)

• In cooperative stochastic games, Nash-Q values are unique (unique 
equilibrium point in terms of utilities)
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Joint Q-Learning
Initialize Q-values

Repeat until convergence of Q values
Repeat for each agent i

• Select and execute ai

• Observe s’, ri, a-i

• Update counts for states/joint actions:

• Update learning rate:

• Update counts for states/individual agent actions:

• Update beliefs:

• Update Q-value:
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Exploration-Exploitation Tradeoff

• Epsilon-greedy
• Like in the single case, but now you are taking the best-response action given 

your beliefs

• Boltzmann exploration
• “Temperature” parameter T (high T increases randomness, low T is less 

random)
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Summary

• Stochastic Games

• Fictitious Play

• How  to learn in Cooperative Stochastic Games
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