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Problems of cooperation
are ubiquitous and
Important

These are situations where agents have
opportunities to improve their joint welfare
but where it is not easy for them to do so.
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Cooperation iIs Key

Arguably, the success of humans is
rooted in our ability to cooperate.

Since machines powered by Al are

laying an ever-greater role in our
ives, it will be important to equip
them with the capabilities necessary
to cooperate and foster
cooperation.

This requires social understanding
and cooperative intelligence.




Cooperative Al: machines must
learn to find commonground

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson & Thore Graepel

To help humanity solve
fundamental problems

of cooperation, scientists
need to reconceive artificial
intelligence as deeply social.




Historically Al has been steeped in “methodological
individualism”
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Cooperation is not just having multiple agents

» ACM Chess Challen L

Garry Kasparov
Vs

Al has seen significant progress in multi-
agent settings

* Backgammon (e.g. TD-Gammon)
e Checkers (e.g. Chinook)
Chess (e.g. DeepBlue)

* Go (e.g. AlphaGo)

* Poker (e.g.Pluribus)

* Starcraft (e.g. AlphaStar)

* Diplomacy

But these, by and large, are games of

. . i ..
conflict, not cooperation. &3 BLUFF



Cooperative Al

Cooperative Al
Al Research trying to help

humans and machines find
ways to improve their joint
welfare.




Different Types of Cooperation

A: Human-Human Cooperation
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B: Cooperative Tools

C: Alignment and Safety
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D: {Human-Al}-{Human-Al} Cooperation
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Cacial Plarner

E: The Planner Perspective

F: Organizations and Society

Dafoe et al

,2021



Understanding

The ability to take into
account the
consequences of actions,
to predict others’
behaviours, and the
implications of another’s
beliefs and preferences

Communication

The ability to explicitly
and credibly share
information with others
relevant to
understanding
behaviour, intentions,
and preferences
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Commitment

The ability to make
credible promises when

needed for cooperation.

To support cooperative Al we require
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Institutions

Social infrastructure —
such as shared beliefs or
rules — that reinforces
understanding,
communication and
commitment.



Example - Autonomous
Vehicles

There are numerous cooperative opportunities for
AVs and other drivers (be they human or other AVs)

* AVs need to understand other drivers and road-
users

* AVs need to be able to communicate with
others

* AVs need to be able to make commitments

* Populations of drivers might be made better off
by new institutions or rules



To support cooperative Al we require
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Understanding Communication Commitment Institutions
The ability to take into he ability to explicitly The ability to make Social infrastructure —
account the and credibly share credible promises when such as shared beliefs or
consequences of actions, nformation with others needed for cooperation. rules — that reinforces
to predict others’ relevant to understanding,

communication and
commitment.

understanding
behaviour, intentions,
and preferences

behaviours, and the
implications of another’s
beliefs and preferences



@ Understanding

The ability to take into account the consequences of actions, to predict others’
behaviours, and the implications of another’s beliefs and oreferences.
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* Richer game theoretic models

Preference elicitation and modelling

Representation learning

Inverse reinforcement learning

Advances in computational theory of mind
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Game-theoretic models to support AVs

[A Sarkar, K. Larson, K Czarnacki, AAAI 2022, NeurlPS Workshop on Cooperative Al, 2021, AAMAS 2023]

Research Question: How should an AV safely handle other road users
who show complex and varied behaviors?

Approach: There has been a shift from “predict-and-plan” approaches
for driving behavior modelling to strategic models of non-zero sum
games between road users and AVs.

Challenge: (Human) driving behavior is diverse.
* Need to both model the diversity of human driving behavior as well as plan
a response from the perspective of the A
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Game-theoretic models to support AVs

[A Sarkar, K. Larson, K Czarnacki, AAAI 2022, NeurlPS Workshop on Cooperative Al, 2021, AAMAS 2023]

deSog) Generalized dynamic cognitive

leve :
UMDY Strategies

hierarchy models

non-strategic layer

* Non-strategic level: Agents
(drivers) do not reason about
others

* We use automata strategies




Game-theoretic models to support AVs

[A Sarkar, K. Larson, K Czarnacki, AAAI 2022, NeurlPS Workshop on Cooperative Al, 2021, AAMAS 2023]

Generalized dynamic cognitive

(ljekaerg hierarchy models
v (AULoMmMa strategies) e l v * Non-strategic level
/ non-strateqic layer
/ A - * Strategic level: Agents (drivers) reason
/ 4 ) about others on the road

|
/ J ' SPNE l ‘\ » dLk(level 1): dynamic quantal level-k

model

SSPE MSPE  Safety satisficing perfect equilibria (SSPE)
* Select actions “close” to a NE as long as

dLK(.A)

level-1 ;
actions lead to outcomes what are above

strategac layer some safety aspiration threshold
: * Maneuver satisficing perfect equilibria
(MSPE)

* Select actions “close” to a NE as long as
actions lead to outcomes that are above

robust layer some maneuver aspiration threshold
(AV response)




Game-theoretic models to support AVs

[A Sarkar, K. Larson, K Czarnacki, AAAI 2022, NeurlPS Workshop on Cooperative Al, 2021, AAMAS 2023]

Generalized dynamic cognitive
hierarchy models

non-strategic layer  « Non-strategic level

dLk(.A4)

level-0
v (UMDY SUrategies)
’

7
/ A ’ R » Strategic level: Agents (drivers) reason about others on the road

j ' SPN E l ‘\ * dLk(level 1): dynamic quantal level-k model

! » Safety satisficing perfect equilibria (SSPE)
* Select actions “close” to a NE as long as actions lead to outcomes what are
d Lk(‘A ) above some safety aspiration threshold
SS PE M S P E * Maneuver satisficing perfect equilibria (MSPE)
level-1 |

* Select actions “close” to a NE as long as actions lead to outcomes that are above
some maneuver aspiration threshold

\ SUrategic laver , popst layer: AV planning
* Provides the ability to reason about

robust - heterogeneous populations of reasoners
response robust layer including strategic, non-strategic, and those
:; following different models within each layer.

(AV response)



Game-theoretic models to support AVs

[A Sarkar, K. Larson, K Czarnacki, AAAI 2022, NeurlPS Workshop on Cooperative Al 2021, AAMAS 2023]

Evaluation:

e Evaluation on naturalistic data sets and
simulations of critical scenarios

(a) Snapshot of naturalistic datasets (WMA and 1nD)

) ‘. . Findings
A \ s * Models matched human driving behaviour
L : well compared to alternative models from
. ; literature
(b) Simulation of critical scenanios: iersection clearance, merge * For behaVIOur plannln,g’ rObUSt res_ponse to
befare intersection, parking pullout. heterogeneous behaviour models is both

effective and stable across populations of
drivers with different levels of risk tolerance



To support cooperative Al we require
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Understanding Communication Commitment Institutions
The ability to take into he ability to explicitly The ability to make Social infrastructure —
account the and credibly share credible promises when such as shared beliefs or
consequences of actions, nformation with others needed for cooperation. rules — that reinforces
to predict others’ relevant to understanding,

communication and
commitment.

understanding
behaviour, intentions,
and preferences

behaviours, and the
implications of another’s
beliefs and preferences



'.;3;' Communication

The ability to explicitly and credibly share information with others
relevant to understanding behaviour, intentions, and preferences.
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Here is ice cream. you can
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*}; Communication
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A) Single sender
architecture
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Where we are
* Learning through imitation/demonstrations (i.e.

o
having a “teacher” in the system)

- % e-greedy &
e Communication equilibria in game theory

[ ] E m e rge n ce Of Si m pI e CO m m u n ica tio n in m u I tia ge nt Figure 1: Both the sender and the receiver see the gridworld environment, yet only the sender sees the goal location (A). It
selects a message action (a single symbol) based on the one-hot encoding of the goal location. The receiver selects a navigation

Syste l I IS action based on the multi-hot input vector that encodes its own location and the message (B).

* Large language models (e.g. GPT-3, BART)

. -

B) Receiver
architecture
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l. Kajic et al

Where we might go

e Automating negotiations in complex open domains

* Moving from language models (P(text)) to intentful
models (P(text|intent))

* Emergence of complex language from scratch

Autonomous vehicles might negotiate with each other for right of way. PHOTO_CONCEPTS/ISTOCKPHOTO

How artificial intelligence could negotiate better deals for humans



To support cooperative Al we require
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Understanding Communication Commitment Institutions
The ability to take into he ability to explicitly The ability to make Social infrastructure —
account the and credibly share credible promises when such as shared beliefs or
consequences of actions, nformation with others needed for cooperation. rules — that reinforces
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communication and
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The ability to make credible promises when needed for cooperation.

W h e re We a re : : : DOI:10.1145/3448248
The pursuit of responsible Al raises the ante
e Trust and re put ation systems on both the trustworthy computing and formal
. . methods communities.
* Privacy preserving ML
* Smart contracts and distributed ledgers

(blockchain) @ TI'UStWOI'thy

e Assistants to track commitments AI

‘ BY JEANNETTE M. WING

Where we might go
* Automated auditing of agent behaviour
* Automated reasoning about effects of
commitments
* Novel commitment devices

Trusted Al and the Contribution of
Trust Modeling in Multiagent Systems
Blue Sky Ideas Track

Robin Cohen, Mike Schaekermann, Sihao Liu, Michael Cormier
Computer Science; University of Waterloo; Waterloo, Canada



To support cooperative Al we require
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Understanding Communication Commitment Institutions
The ability to take into he ability to explicitly The ability to make Social infrastructure —
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7 Institutions

Social infrastructure — such as shared beliefs
or rules — that reinforces understanding,
communication and commitment.

Institutional structures can take many forms

* Informal norms like holding a door open for
someone

* Formalized institutions like rules that describe
voting processes for elections




Institutional Structures

Teams as a way of promoting

cooperation [Radke, Larson, and Brecht, [JCAI
2022, AAMAS 2023, [JCAI 2023]
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What are effective ways of designing

group rewa rds? [d’Eon, Larson, and Law, CSCW
2019, d’Eon and Larson, AAMAS 2020]

1-BETTER-ZEROS2 1-BETTER-SUM30

X 1 A s G v i [ e .’ o
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Player A Player A
1-BETTER-ZEROS5 1-BETTER-SUM45

YN0
0 10 20 30 40 50 60
Player A Player A

1-BETTER-ZEROS10 1-BETTER-SUM60

60 /

N0
0 10 20 30 40 50 60
Player A Player A




Towards a better understanding of teams in
multia FeNT SYSTEMS [Radke, Larson, and Brecht, AAAI 2022, AAMAS 2023, ICAI 2023

Base Environment

» Stochastic Game: G = (N, S,{A}ien, {R}ien, P, 7, X)

* N: Set of all agents, initialized randomly

. S State space observable by all agents

« {A}ien : Joint action space for all agents (indexed by i)
* {Rlien : Joint reward space for all agents (indexed by i)
« P:SxAm— A(S): Represents the transition function

* 7 Discount factor

I Y Represents the policy space of all agents

* Predefined Teams (G, 7 );
T ={T)|T; C N,UT = N, T; N T; = Vi, 7}
* Agents have modified reward functions



Towards a better understanding of teams in
multi AgeNnt SYSTEMS [radke, Larson, and Brecht, AAAI 2022, AAMAS 2023, 1JCAI 2023]
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Towards a better understanding of teams in
multi AgeNnt SYSTEMS [radke, Larson, and Brecht, AAAI 2022, AAMAS 2023, 1JCAI 2023]

Require reward-causing state-action
pairs [Aronja-Medina et al, 2019]
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If team size becomes too large, we fall
into an information sparsity scenario
where credit assignment is challenging
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Institutional Structures

Teams as a way of promoting

cooperation [Radke, Larson, and Brecht, [JCAI
2022, AAMAS 2023, [JCAI 2023]
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What are effective ways of designing

group rewa rds? [d’Eon, Larson, and Law, CSCW
2019, d’Eon and Larson, AAMAS 2020]
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Motivating Problem

With colleagues in HCI, we have been designing platforms to support
collaborative work [CSCW 18, CSCW19a, CSCW19b, CHI20]
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(b) Data view for disagreement case with expert discussion.

Fig. 1 Intertace for structured adjudication of classification decisions in medical time series analysis

[Schaekermann et al, CSCW 2019a]

How do you reward workers for their effort?



Supporting Collaborative Work Through Fair
Reward Shari NE [d'Eon, Goh, Larson, Law, CSCW2019]

We studied collaborative tasks and workers’ perception of fair and
unfair payments.

Worker 3 (you): words typed: 20072 (38%), correct: 206728 (A9

While workers were biased, they were perceptive of fair and unfair payments.
Fairness mattered.



s There a Relationship Between the Shapley Value
and Human Reward-DiviSion?[d'Eon, Larson, AAMAS 2020]

Axioms of Fairness

Efficiency: ), v; = f(N)
Symmetry: Equal players are rewarded equally.

Null Players: A player who contributes nothing to any coalition should
get no reward.

Additivity: If f and g are two games, then define a new game
(f+g)(C) = f(C) + g(C) for all C. Then
vi(f +g) = vi(f) + vi(g).

Shapley Value

str)y= 3 [CNI=ICL =Dy iy - £(0))
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Data-Driven Axiomatic Testing

Axioms of Fairness

Efficiency: ), v; = f(N)
Symmetry: Equal players are rewarded equally.

Null Players: A player who contributes nothing to any coalition should
get no reward. x

Additivity: If f and g are two games, then define a new game
(f+g)(C)=f(C)+ g(C) for all C. Then x
vi(f + g) = vi(f) + vi(g).

Shapley Value

swry= 3 LMV ICT = Doy (1) - £(C))

I
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Data-Driven Axiomatic Testing

Axioms of Fairness

Efficiency: ) . v, = f(N)

Symmetry: Equal players are rewarded equally.

Null Players: A player who contributes nothing to any coalition should

get no reward.

Additivity: If f and g are two games, then define a new game
(f +g)(C) = f(C)+ g(C) for all C. Then
vi(f + g) = vi(f) + vi(g)-

Shapley Value

su(f) = 3 SRR =R (r(cuin - f(0)

CCN\i

f

f

Young’s [1985] alternative axiomatization of Shapley
replaces null-player and additivity with a strong
monotonicity property.

Relaxations of strong monotonicity include local
monotonicity [Casajus and Huettner, 2013] and
coalitional monotonicity [Young 1985].

Local Monotonicity:
At least 89% of our data was consistent.

Coalitional monotonicity:
At least 77% of our data was consistent (for
games where coalitional monotonicity was defined).



Data-Driven Axiomatic Approaches

Process requires two key ingredients

Data:
* Controlled experiments allow for testing a particular axiom

* In-the-wild experiments may provide more representative reactions
* (Speculative) Possibly use LLMs to generate data [e.g. Horton, 2023]

Testing Axioms:

e Count violations of axioms
e Quantify how drastically an axiom has been violated
* Development of rigorous tools for quantifying axiomatic breakdown

A possible approach for testing and refining institutional structures (i.e.
rules for supporting collaborative and cooperative behaviours).



Cooperative Al

Cooperative Al
Al Research trying to help

humans and machines find
ways to improve their joint
welfare.




Cooperative Al

Economics Sociology
Psychology

Cooperative Al
Multiagent Al Research trying to help
Syt humans and machines find

ways to improve their joint
welfare

Social

Choice Al Alignment




Cooperation should be at the centre of Al research
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It is unlikely to emerge as a by-product of other kinds of
Al research.

Research in this area is inherently inter-disciplinary and
will require many different perspectives.
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In general, we need to move from individual objectives to
shared, poorly defined, ways humans solve social
problems: creating language, norms and institutions.
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Questions
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