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Incomplete Data

So far we have seen problems where
= Values of all attributes are known

= Learning is relatively easy

Many real-world problems have hidden variables
= Incomplete data

= Missing attribute values



Maximum Likelihood Learning

Learning of Bayes nets parameters
= Ov=true, Par(v)=x = P(V=truelPar(V)=Xx)

= Ovx=true, Par(v)=x =(#Insts V=true)/(Total #V=x)

Assumes all attributes have values

= What if some values are missing?



Naive Solutions

® Ignore examples with missing attribute

values

= What if all examples have missing attribute
values?

® Ignore hidden variables

= Model might become much more complex



Hidden Variables
Heart disease example

(a) (b)

a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)
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“Direct” ML

Maximize likelihood directly where E are the
evidence variables and Z are the hidden variables

hyr = arg max P(E|h)

— argmngP(Ea Z|h)
Z
Z 1
= arg m}&LLX log Z H CPT(V;)
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Expectation-Maximization (EM)

If we knew the missing values computing hm is
trivial

® Guess hwm

® Jlterate

= Expectation: based on hme compute expectation
of (missing) values

= Maximization: based on expected (missing)
values compute new hme



Expectation-Maximization (EM)

Formally
— Approximate maximum likelihood

— lteratively compute:

- h,,,=argmax, %, P(Zlh,,e)log P(e,Zlhi)
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EM Derivation

log P(e|h) = log {P(e,Z|h)}

P(Zle, h)
= log P(e,Z|h) — log P(Z|e, h)

=) P(Zle,h)log P(e,Z|h) — Y  P(Zle,h)log P(Z|e, h)
Z Z

> " P(Zle,h)log P(e, Z|h)
Z
EM finds a local maxima of > _ P(Zle, h)log P(e, Z|h)
Z

which is a lower bound of log P(e|h)
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EM

Log inside can linearize the product
hit1 = arg mi?xz P(Z|h,e)log P(e, Z|h)
= arg max Z P(Z|h,e)log | | CPT;

J

_ argmaxZP Z|h, e Zlog CPT,

Monotonic |mprovement of likelihood
P(elh;+1) > P(elh;)



Example

Assume we have two coins, A and B

The probability of getting heads with A
IS Oa

The probability of getting heads with B
IS BB

We want to find 6a and 0z by
performing a number of trials

Example from S. Zafeiriohu, Advanced Statistical Machine Learning, Imperial College



Example

Coin A and Coin B

HTTTHHTHTH
HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT
THHHTHHHTH

Coin A CoinB
5H,5T
OH,1T
SH,2T
4H,6T
7H,3T
24H,6 T|9H, 11T




Example

Coin A CoinB

5H,5T 24
’ 0 = = 0.8
OH, 1T 4T 24+6
9
8H, 2T Ap = =0.45
4H,6T )+ 1

/7H, 3T

24H,6T|9H, 11T




Example

Now assume we do
not know which coin
was used in which
trial (hidden variable)

HTTTHHTHTH
HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT
THHHTHHHTH



Example

Initialization: 6% = 0.60
6% = 0.50

E Step: Compute the Expected counts of Heads and Tails

Trial 1: HTTTHHTHTH

P(Trial 1|4)P(A)

S = 0.45 Coin A |CoinB
Zie{A,B} P(Trial 1]2) P ()

P(A|Trial 1) =

2.2H, |2.8H,

P(Trial 1IB)P(B)  _ ., 59T 58T

> ez P(Trial 113 P(3)

P(B|Trial 1) =




Example

HTTTHHTHTH

(0.55 A, 0.45 B) Coin A Coin B

HHHHTHHHHH |2 2H, 2.2T |2.8H, 2.8T

(0.80 A, 0.20 B) 72H 08T  |1.8H, 0.2T

HTHHHHHTHH (591 157 2.1H, 0.5T

(0.73 A, 0.27 A)
1.4H, 2.1T |2.6H, 3.9T

HTHTTTHHTT 4.5H, 1.9T 2.5H, 1.1T

(0.35 A, 0.65 B)
21.3H, 8.6T |11.7H, 8.4T
THHHTHHHTH

(0.65 A, 0.35 B)



Example

M Step: Compute parameters based on expected counts

Coin A Coin B oo 23 o
2.2H, 2.2T |2.8H, 2.8T 1 21-51’>1f78-6
7.2H, 0.8T 1.8H, 0.2T B Ti7184
5.9H, 1.5T 2.1H, 0.5T

1.4H, 2.1T |2.6H, 3.9T Repeat
4.5H,1.9T 2.5H, 1.1T 610 = 0.80
21.3H, 8.6T (11.7H, 8.4T 0% = 0.52
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EM: k-means Algorithm

Input Output

®* Set of examples, E o

Function class:E-> {1,... k}
where class(e)=i means

Input features example e belongs to

X1,...,Xn -
class i
[ —_
]:/a/{e,X)._;/alue OrL I ® Function pval where
eea ure j for example pval(i,X;) is the predicted

value of feature X for each

example in class |
k classes



K-means Algorithm

®* Sum-of-squares error for class i and pval is

> ) (pval(class(e), X;) — val(e, X))’

eckE 1=1

®* Goal: Final class and pval that minimizes

sum-of-squares error.



Minimizing the error

(g
Z Z(pval(cla,ss(e), X;) — val(e, X;))?
eck j=1
®* Given class, the pval that minimizes sum-of-
square error is the mean value for that class

Given pval, each example can be assigned to
the class that minimizes the error for that
example
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K-means Algorithm

e Randomly assign the examples to classes

e Repeat the following two steps until E step does not change the assignment of
any example

— M: For each class i and feature X|

Ze:class(e):z’ Va'l(e’ XJ)
{e : class(e) = i}

— E: For each example e, assign e to the class that minimizes
n

Z(pval(class(e), X;) — val(e, X;))?

pVal(i, XJ) —
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K-means Example

e Data set: (X,Y) pairs

)

- (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4),
(3.5, 5), (45 1.5), (5.2, 0.7), (5.3, 1.8), (6.2,
1.7), (6.7,2.5), (8.5,9.2),(9.1,9.7), (9.5
8.5)
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Example Data

®
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Random Assignment to Classes
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Assign Each Example to Closest Mean

10 \><
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Reassign each example

10 )%
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Properties of k-means

®* An assignment is stable if both M step and E

step do not change the assignment

Algorithm will eventually converge to a stable local
minimum

No guarantee that it will converge to a global
minimum

® Increasing k can always decrease error until k

IS the number of different examples
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