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Incomplete Data
So far we have seen problems where

- Values of all attributes are known

- Learning is relatively easy

Many real-world problems have hidden variables
- Incomplete data

- Missing attribute values
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Maximum Likelihood Learning

Learning of Bayes nets parameters
- ΘV=true, Par(V)=x = P(V=true|Par(V)=x)

- ΘV=true, Par(V)=x =(#Insts V=true)/(Total #V=x)

Assumes all attributes have values
- What if some values are missing?
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Naïve Solutions

• Ignore examples with missing attribute 
values
- What if all examples have missing attribute 

values?

• Ignore hidden variables
- Model might become much more complex
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Hidden Variables
Heart disease example

a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)



“Direct” ML
Maximize likelihood directly where E are the 
evidence variables and Z are the hidden variables
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Expectation-Maximization (EM)

If we knew the missing values computing hML is 
trivial

• Guess hML

• Iterate
- Expectation: based on hML compute expectation 

of (missing) values

- Maximization: based on expected (missing) 
values compute new hML
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Expectation-Maximization (EM)

Formally
– Approximate maximum likelihood

– Iteratively compute:

– hi+1=argmaxh ΣZ P(Z|hi,e)log P(e,Z|hi)

Expectation

Maximization



EM Derivation
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EM finds a local maxima of 

which is a lower bound of 



EM
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Log inside can linearize the product

Monotonic improvement of likelihood 



Example

• Assume we have two coins, A and B

• The probability of getting heads with A 
is θA

• The probability of getting heads with B 
is θB

• We want to find θA and θB by 
performing a number of trials
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Example from S. Zafeiriohu, Advanced Statistical Machine Learning, Imperial College



Example

• H T T T H H T H T H

• H H H H T H H H H H

• H T H H H H H T H H

• H T H T T T H H T T

• T H H H T H H H T H
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Coin A and Coin B
Coin A Coin B

5 H, 5 T
9 H, 1 T
8 H, 2 T

4 H, 6 T
7 H, 3 T
24 H, 6 T 9 H, 11 T



Example

13

Coin A Coin B
5 H, 5 T

9 H, 1 T
8 H, 2 T

4 H, 6 T
7 H, 3 T
24 H, 6 T 9 H, 11 T



Example

• H T T T H H T H T H

• H H H H T H H H H H

• H T H H H H H T H H

• H T H T T T H H T T

• T H H H T H H H T H
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Now assume we do 
not know which coin 
was used in which 
trial (hidden variable)



Example
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Initialization:

E Step: Compute the Expected counts of Heads and Tails

Trial 1: H T T T H H T H T H

Coin A Coin B
2.2 H,
2.2 T

2.8 H,
2.8 T



Example
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• H T T T H H T H T H 
(0.55 A, 0.45 B)

• H H H H T H H H H H 
(0.80 A, 0.20 B)

• H T H H H H H T H H
(0.73 A, 0.27 A)

• H T H T T T H H T T
(0.35 A, 0.65 B)

• T H H H T H H H T H 
(0.65 A, 0.35 B)

Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T
7.2H, 0.8T 1.8H, 0.2T
5.9H, 1.5T 2.1H, 0.5T
1.4H, 2.1T 2.6H, 3.9T
4.5H, 1.9T 2.5H, 1.1T
21.3H, 8.6T 11.7H, 8.4T



Example
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Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T
7.2H, 0.8T 1.8H, 0.2T
5.9H, 1.5T 2.1H, 0.5T
1.4H, 2.1T 2.6H, 3.9T
4.5H, 1.9T 2.5H, 1.1T
21.3H, 8.6T 11.7H, 8.4T

Repeat

M Step: Compute parameters based on expected counts



EM: k-means Algorithm

• Set of examples, E

• Input features 
X1,…,Xn

• val(e,X)=value of 
feature j for example 
e

• k classes
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• Function class:E-> {1,…,k} 
where class(e)=i means  
example e belongs to 
class i

• Function pval where 
pval(i,Xj) is the predicted 
value of feature Xj for each 
example in class i 

Input Output
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k-means Algorithm 

• Sum-of-squares error for class i and pval is

• Goal: Final class and pval that minimizes 
sum-of-squares error.
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Minimizing the error

• Given class, the pval that minimizes sum-of-
square error is the mean value for that class

• Given pval, each example can be assigned to 
the class that minimizes the error for that 
example
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k-means Algorithm
• Randomly assign the examples to classes

• Repeat the following two steps until E step does not change the assignment of 
any example

– M: For each class i and feature Xj

– E: For each example e, assign e to the class that minimizes
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k-means Example

• Data set: (X,Y) pairs
– (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4), 

(3.5, 5), (4.5, 1.5), (5.2, 0.7), (5.3, 1.8), (6.2, 
1.7), (6.7, 2.5),     (8.5, 9.2), (9.1, 9.7), (9.5, 
8.5)
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Example Data
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Random Assignment to Classes
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Assign Each Example to Closest Mean
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Reassign each example
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Properties of k-means
• An assignment is stable if both M step and E 

step do not change the assignment
- Algorithm will eventually converge to a stable local 

minimum

- No guarantee that it will converge to a global 
minimum

• Increasing k can always decrease error until k 
is the number of different examples


