Expectation Maximisation (EM)

CS 486/686: Introduction to Artificial Intelligence University of Waterloo

Incomplete Data

So far we have seen problems where

- Values of all attributes are known
- Learning is relatively easy

Many real-world problems have hidden variables

- Incomplete data
- Missing attribute values

Maximum Likelihood Learning

Learning of Bayes nets parameters

$$
\begin{array}{ll}
\text { - } \quad \Theta \mathrm{V}=\text { true, } \operatorname{Par}(\mathrm{V})=\mathrm{x}=\mathrm{P}(\mathrm{~V}=\text { truelPar }(\mathrm{V})=\mathrm{x}) \\
\text { - } \quad & \Theta \mathrm{V}=\text { true, } \operatorname{Par}(\mathrm{V})=\mathrm{x}=(\# \text { Insts } \mathrm{V}=\text { true }) /(\text { Total } \# \mathrm{~V}=\mathrm{x})
\end{array}
$$

Assumes all attributes have values

- What if some values are missing?

Naïve Solutions

- Ignore examples with missing attribute values
- What if all examples have missing attribute values?
- Ignore hidden variables
- Model might become much more complex

Hidden Variables

Heart disease example

a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)

"Direct" ML

Maximize likelihood directly where E are the evidence variables and Z are the hidden variables

$$
\begin{aligned}
h_{M L} & =\arg \max _{h} P(E \mid h) \\
& =\arg \max _{h} \sum_{Z} P(E, Z \mid h) \\
& =\arg \max _{h} \sum_{Z} \prod_{i} \mathrm{CPT}\left(V_{i}\right) \\
& =\arg \max _{h} \log \sum_{z} \prod_{i} \mathrm{CPT}\left(V_{i}\right)
\end{aligned}
$$

Expectation-Maximization (EM)

If we knew the missing values computing $h_{M L}$ is trivial

- Guess hmL
- Iterate
- Expectation: based on hмL compute expectation of (missing) values
- Maximization: based on expected (missing) values compute new hмь

Expectation-Maximization (EM)

Formally

- Approximate maximum likelihood
- Iteratively compute:
$-h_{i+1}=\operatorname{argmax}_{\mathrm{h}} \Sigma_{\mathrm{Z}} \mathrm{P}\left(\mathbf{Z} \mid \mathrm{h}_{\mathrm{i}}, \mathbf{e}\right) \log \mathrm{P}\left(\mathbf{e}, \mathbf{Z} \mid \mathrm{h}_{\mathrm{i}}\right)$

Expectation

Maximization

EM Derivation

$$
\begin{aligned}
\log P(\mathbf{e} \mid h) & =\log \left[\frac{P(\mathbf{e}, \mathbf{Z} \mid h)}{P(\mathbf{Z} \mid \mathbf{e}, h)}\right] \\
& =\log P(\mathbf{e}, \mathbf{Z} \mid h)-\log P(\mathbf{Z} \mid \mathbf{e}, h) \\
& =\sum_{Z} P(\mathbf{Z} \mid \mathbf{e}, h) \log P(\mathbf{e}, \mathbf{Z} \mid h)-\sum_{Z} P(\mathbf{Z} \mid \mathbf{e}, h) \log P(\mathbf{Z} \mid \mathbf{e}, h) \\
& \geq \sum_{Z} P(\mathbf{Z} \mid \mathbf{e}, h) \log P(\mathbf{e}, \mathbf{Z} \mid h)
\end{aligned}
$$

EM finds a local maxima of $\quad \sum_{Z} P(\mathbf{Z} \mid \mathbf{e}, h) \log P(\mathbf{e}, \mathbf{Z} \mid h)$
which is a lower bound of $\log P(\mathbf{e} \mid h)$

EM

Log inside can linearize the product

$$
\begin{aligned}
h_{i+1} & =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \log P(\mathbf{e}, \mathbf{Z} \mid h) \\
& =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \log \prod_{j} \mathrm{CPT}_{j} \\
& =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \sum_{j} \log \mathrm{CPT}_{j}
\end{aligned}
$$

Monotonic improvement of likelihood

$$
P\left(\mathbf{e} \mid h_{i+1}\right) \geq P\left(\mathbf{e} \mid h_{i}\right)
$$

Example

Assume we have two coins, A and B

- The probability of getting heads with A is θ_{A}
- The probability of getting heads with B is θ_{B}
- We want to find θ_{A} and θ_{B} by performing a number of trials

Example

Coin A and Coin B

- HTTTHHTHTH
- HHHHTHHHHH
- HTHHHHHTHH
- HTHTTTHHTT
- THHHTHHHTH

Coin A	Coin B
	$5 \mathrm{H}, 5 \mathrm{~T}$
$9 \mathrm{H}, 1 \mathrm{~T}$	
$8 \mathrm{H}, 2 \mathrm{~T}$	
	$4 \mathrm{H}, 6 \mathrm{~T}$
$7 \mathrm{H}, 3 \mathrm{~T}$	
$\mathbf{2 4} \mathbf{H}, \mathbf{6} \mathbf{~ T}$	$\mathbf{9} \mathbf{H}, \mathbf{1 1} \mathbf{~ T}$

Example

Coin A	Coin B
	$5 \mathrm{H}, 5 \mathrm{~T}$
$9 \mathrm{H}, 1 \mathrm{~T}$	
$8 \mathrm{H}, 2 \mathrm{~T}$	
	$4 \mathrm{H}, 6 \mathrm{~T}$
$7 \mathrm{H}, 3 \mathrm{~T}$	
$\mathbf{2 4} \mathbf{H}, \mathbf{6} \mathbf{~ T}$	$\mathbf{9} \mathbf{H , 1 1} \mathbf{~ T}$

$$
\begin{aligned}
& \theta_{A}=\frac{24}{24+6}=0.8 \\
& \theta_{B}=\frac{9}{9+11}=0.45
\end{aligned}
$$

Example

Now assume we do not know which coin was used in which trial (hidden variable)

- HTTTHHTHTH
- HHHHTHHHHH
- HTHHHHHTHH
- HTHTTTHHTT
- THHHTHHHTH

Example

Initialization: $\quad \theta_{A}^{0}=0.60$

$$
\theta_{B}^{0}=0.50
$$

E Step: Compute the Expected counts of Heads and Tails

Trial 1: HTTTHHTHTH

$$
\begin{aligned}
& P(A \mid \text { Trial 1 })=\frac{P(\text { Trial } 1 \mid A) P(A)}{\sum_{i \in\{A, B\}} P(\text { Trial } 1 \mid i) P(i)}=0.45 \\
& P(B \mid \text { Trial } 1)=\frac{P(\text { Trial } 1 \mid B) P(B)}{\sum_{i \in\{A, B\}} P(\text { Trial } 1 \mid i) P(i)}=0.55
\end{aligned}
$$

Coin A	Coin B
2.2 H,	2.8 H,
2.2 T	2.8 T

Example

- HTTTHHTHTH (0.55 A, 0.45 B)
- HHHHTHHHHH (0.80 A, 0.20 B)
- HTHHHHHTHH (0.73 A, 0.27 A)
- HTHTTTHHTT (0.35 A, 0.65 B)
- THHHTHHHTH (0.65 A, 0.35 B)

Coin A	Coin B
$2.2 \mathrm{H}, 2.2 \mathrm{~T}$	$2.8 \mathrm{H}, 2.8 \mathrm{~T}$
$7.2 \mathrm{H}, 0.8 \mathrm{~T}$	$1.8 \mathrm{H}, 0.2 \mathrm{~T}$
$5.9 \mathrm{H}, 1.5 \mathrm{~T}$	$2.1 \mathrm{H}, 0.5 \mathrm{~T}$
$1.4 \mathrm{H}, 2.1 \mathrm{~T}$	$2.6 \mathrm{H}, 3.9 \mathrm{~T}$
$4.5 \mathrm{H}, 1.9 \mathrm{~T}$	$2.5 \mathrm{H}, 1.1 \mathrm{~T}$
$\mathbf{2 1 . 3 H}, \mathbf{8 . 6 T}$	$\mathbf{1 1 . 7 H}, \mathbf{8 . 4 T}$

Example

M Step: Compute parameters based on expected counts

Coin A	Coin B
$2.2 \mathrm{H}, 2.2 \mathrm{~T}$	$2.8 \mathrm{H}, 2.8 \mathrm{~T}$
$7.2 \mathrm{H}, 0.8 \mathrm{~T}$	$1.8 \mathrm{H}, 0.2 \mathrm{~T}$
$5.9 \mathrm{H}, 1.5 \mathrm{~T}$	$2.1 \mathrm{H}, 0.5 \mathrm{~T}$
$1.4 \mathrm{H}, 2.1 \mathrm{~T}$	$2.6 \mathrm{H}, 3.9 \mathrm{~T}$
$4.5 \mathrm{H}, 1.9 \mathrm{~T}$	$2.5 \mathrm{H}, 1.1 \mathrm{~T}$
$\mathbf{2 1 . 3 H}, \mathbf{8 . 6 T}$	$\mathbf{1 1 . 7 H}, \mathbf{8 . 4 T}$

$$
\begin{aligned}
\theta_{A}^{1} & =\frac{21.3}{21.3+8.6}=0.71 \\
\theta_{B}^{1} & =\frac{11.7}{11.7+8.4}=0.58
\end{aligned}
$$

Repeat

$$
\begin{aligned}
& \theta_{A}^{10}=0.80 \\
& \theta_{B}^{10}=0.52
\end{aligned}
$$

EM: k-means Algorithm

Input

- Set of examples, E
- Input features
$\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- val($e, X)=$ value of feature j for example e
- k classes

Output

- Function class:E-> $\{1, \ldots, k\}$ where class(e)=i means example e belongs to class i
- Function pval where pval($\left(i, X_{j}\right)$ is the predicted value of feature X_{j} for each example in class i

k-means Algorithm

- Sum-of-squares error for class i and pval is

Goal: Final class and pval that minimizes sum-of-squares error.

Minimizing the error

Given class, the pval that minimizes sum-ofsquare error is the mean value for that class

Given pval, each example can be assigned to the class that minimizes the error for that example

k-means Algorithm

- Randomly assign the examples to classes
- Repeat the following two steps until E step does not change the assignment of any example
- M: For each class i and feature Xj

$$
\operatorname{pval}\left(i, X_{j}\right)=\frac{\sum_{e: \operatorname{class}(e)=i} \operatorname{val}\left(e, X_{j}\right)}{|\{e: \operatorname{class}(e)=i\}|}
$$

- E: For each example e, assign e to the class that minimizes

$$
\sum_{j=1}^{n}\left(\operatorname{pval}\left(\operatorname{class}(e), X_{j}\right)-\operatorname{val}\left(e, X_{j}\right)\right)^{2}
$$

k-means Example

- Data set: (X, Y) pairs

$$
\begin{aligned}
& -(0.7,5.1)(1.5,6),(2.1,4.5),(2.4,5.5),(3,4.4), \\
& (3.5,5),(4.5,1.5),(5.2,0.7),(5.3,1.8),(6.2, \\
& 1.7),(6.7,2.5), \quad(8.5,9.2),(9.1,9.7),(9.5, \\
& 8.5)
\end{aligned}
$$

Example Data

Random Assignment to Classes

Assign Each Example to Closest Mean

Reassign each example

Properties of k-means

- An assignment is stable if both M step and E step do not change the assignment
- Algorithm will eventually converge to a stable local minimum
- No guarantee that it will converge to a global minimum
- Increasing k can always decrease error until k is the number of different examples

