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Motivation: Things you know

• Agents model uncertainty in the world 
and utility of different courses of actions
- Bayes nets are models of probability 

distributions which involve a graph structure 
annotated with probabilities

- Bayes nets for realistic applications have 
hundreds of nodes

• Where do these numbers come from?
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Pathfinder 
(Heckerman, 1991)

• Medical diagnosis for lymph node 
disease

• Large net
- 60 diseases, 100 symptoms and test 

results, 14000 probabilities

• Built by medical experts
- 8 hours to determine the variables

- 35 hours for network topology

- 40 hours for probability table values
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Knowledge acquisition bottleneck

• In many applications, Bayes net structure and 
parameters are set by experts in the field
- Experts are scarce and expensive, can be 

inconsistent or non-existent

• But data is cheap and plentiful (usually)

• Goal of learning:
- Build models of the world directly from data

- We will focus on learning models for probabilistic 
models
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Candy Example (from R&N)

• Favourite candy sold in two flavours
- Lime and Cherry

• Same wrapper for both flavours

• Sold in bags with different ratios
- 100% cherry
- 75% cherry, 25% lime
- 50% cherry, 50% lime
- 25% cherry, 75% lime
- 100% lime
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Candy Example

• You bought a bag of candy but do not 
know its flavour ratio

• After eating k candies
- What is the flavour ratio of the bag?

- What will be the flavour of the next candy?
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Statistical Learning
• Hypothesis H: probabilistic theory about the world

- h1: 100% cherry
- h2: 75% cherry, 25% lime
- h3: 50% cherry, 50% lime
- h4: 25% cherry, 75% lime
- h5: 100% lime

• Data D: evidence about the world
- d1: 1st candy is cherry
- d2: 2nd candy is lime
- d3: 3rd candy is lime
- …
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Bayesian learning
• Prior: P(H)

• Likelihood: P(d|H)

• Evidence: d=<d1,d2,…,dn>

• Bayesian learning
- Compute the probability of each hypothesis 

given the data

- P(H|d)=α P(d|H)P(H)



9

Bayesian learning
• Suppose we want to make a prediction 

about some unknown quantity x (i.e. flavour 
of the next candy)

• Predictions are weighted averages of the 
predictions of the individual hypothesis



10

Candy Example
• Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>

• Assume candies are i.i.d: P(d|hi)=Πj P(dj|hi)

• Suppose first 10 candies are all lime

- P(d|h1)=010=0

- P(d|h2)=0.2510=0.00000095

- P(d|h3)=0.510=0.00097

- P(d|h4)=0.7510=0.056

- P(d|h5)=110=1
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Candy Example: Posterior
Posteriors given that data is really generated from h5
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Candy Example: Prediction
Prediction next candy is lime given that data is 

really generated from h5
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Bayesian learning
Good News
Optimal: Given prior, no other prediction is correct more 
often than the Bayesian one

No Overfitting: Use the prior to penalize complex 
hypothesis (complex hypothesis are unlikely)

Bad News
Intractable: If hypothesis space is large 

Solution
Approximations: Maximum a posteriori (MAP)
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Maximum a posteriori (MAP)

Idea: Make prediction on the most probable 
hypothesis hMAP

Compare to Bayesian Learning which makes 
predictions on all hypothesis weighted by their 
probability
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MAP – Candy Example
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MAP Properties
• MAP prediction is less accurate than Bayesian 

prediction 
- MAP relies on only one hypothesis

• MAP and Bayesian predictions converge as data 
increases

• No overfitting
- Use prior to penalize complex hypothesis

• Finding hMAP may be intractable
- hMAP=argmax P(h|d)
- Optimization may be hard!
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MAP computation

Optimization

Take log to linearize

Product 
introduces
nonlinear 
optimization



Maximum Likelihood (ML)

• Idea: Simplify MAP by assuming 
uniform prior (i.e. P(hi)=P(hj) for all i,j)

• Make prediction on hML only
- P(x|d)=P(x|hML)
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ML Properties
• ML prediction is less accurate than Bayesian 

and MAP 

• ML, MAP and Bayesian predictions converge 
as data increases

• Subject to overfitting
- Does not penalize complex hypothesis 

• Finding hML is often easier than hMAP

- hML=argmaxj ∑i log P(di|hj)
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Learning with complete data

• Parameter learning with complete data
- Parameter learning task involves finding 

numerical parameters for a probability 
model whose structure is fixed

• Example: Learning CPT for a Bayes net 
with a given structure



21

Simple ML Example

• Hypothesis hθ
- P(cherry)=θ and P(lime)=1-θ

- θ is our parameter

• Data d:
- N candies (c cherry and l=N-c lime)

• What should θ be?
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Simple ML example

Log Likelihood

Likelihood of this particular data set
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Simple ML example

• Find θ that maximizes log likelihood

• ML hypothesis asserts that actual proportion 
of cherries is equal to observed proportion
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More complex ML example

• Hypothesis: hƟ, Ɵ1,Ɵ2

• Data:

c Cherries:
Gc green wrappers
Rc red wrappers

l Limes:
Gl green wrappers
Rl red wrappers
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More complex ML example



More Complex ML
Optimize by taking partial derivatives and setting to zero

✓ =
c

c+ l

✓1 =
Rc

Rc +Gc

✓2 =
Rl

Rl +Gl
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ML Comments
• This approach can be extended to any Bayes 

net 

• With complete data
- ML parameter learning problem decomposes into 

separate learning problems, one for each 
parameter!

- Parameter values for a variable, given its parents 
are just observed frequencies of variable values 
for each setting of parent values!
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A problem: Zero probabilities

• What happens if we observed zero cherry 
candies?
- θ would be set to 0

- Is this a good prediction?

Instead of use



Laplace Smoothing

Given observations x from N trials

Estimate parameters θ
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Naïve Bayes model
• Want to predict a class C 

based on attributes Ai

• Parameters:
- Ɵ =P(C=true)

- Ɵj,1=P(Aj=true|C=true)

- Ɵj,2=P(Aj=true|C=false)

• Assumption: Ai’s are 
independent given C

C

A1 A2 An…
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Naïve Bayes Model
• With observed attribute values x1,x2,…,xn

- P(C|x1,x2,…,xn)=α P(C)Πi P(xi|C)

• From ML we know what the parameters 
should be
- Observed frequencies (with possible Laplace 

smoothing)

• Just need to choose the most likely class 
C



32

Naïve Bayes comments

• Naïve Bayes scales well

• Naïve Bayes tends to perform well
- Even though the assumption that attributes 

are independent given class often does not 
hold

• Application
- Text classification
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Text classification
• Important practical problem, occurring in 

many applications
- Information retrieval, spam filtering, news 

filtering, building web directories…

• Simplified problem description
- Given: collection of documents, classified as 

“interesting” or “not interesting” by people

- Goal: learn a classifier that can look at text of 
new documents and provide a label, without 
human intervention
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Data representation

• Consider all possible significant words that 
can occur in documents

• Do not include stopwords

• Stem words: map words to their root

• For each root, introduce common binary 
feature
- Specifying whether the word is present or not in 

the document
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Example
• “Machine learning is fun”
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Use Naïve Bayes Assumption

• Words are independent of each other, 
given the class, y,  of document

How do we get the probabilities?
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Use Naïve Bayes Assumption

Use ML parameter estimation!

• Count words over collections of 
documents

• Use Bayes rule to compute probabilities 
for unseen documents

• Laplace smoothing is very useful here
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Observations

• We may not be able to find θ analytically

• Gradient search to find good value of θ
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Conclusions

• What you should know
- Bayesian learning, MAP, ML

- How to learn parameters in Bayes Nets

- Naïve Bayes assumption

- Laplace smoothing


