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CS 486/686: Introduction to Artificial Intelligence
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Outline

• Reasoning under uncertainty over time
- Hidden Markov Models

- Dynamic Bayes Nets
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Introduction

• So far we have assumed
- The world does not change

- Static probability distribution

• But the world does evolve over time
- How can we use probabilistic inference for  

weather predictions, stock market predictions, 
patient monitoring, robot localization,...
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Dynamic Inference
• To reason over time we need to consider the 

following:
- Allow the world to evolve

- Set of states (all possible worlds)

- Set of time-slices (snapshots of the world)

- Different probability distributions over states at 
different time-slices

- Dynamic encoding of how distributions change over 
time
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Stochastic Process

• Set of states: S
• Stochastic dynamics: P(st|st-1,...,s0)
• Can be viewed as a Bayes Net with one 

random variable per time-slice
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Stochastic Process
• Problems:

- Infinitely many variables

- Infinitely large CPTs

• Solutions:
- Stationary process: Dynamics do not change 

over time

- Markov assumption: Current state depends only 
on a finite history of past states
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k-Order Markov Process
• Assumption: last k states are sufficient
• First-order Markov process

- P(st|st-1,...,s0)=P(st|st-1)

• Second-order Markov process
- P(st|st-1,...,s0)=P(st|st-1,st-2)
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k-Order Markov Process
• Advantages

- Can specify the entire process using finitely many 
time slices

• Example: Two slices sufficient for a first-
order Markov process
- Graph:

- Dynamics: P(st|st-1)

- Prior: P(s0)
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Example: Robot Localization

• Example of a first-order Markov process
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Problem: 
uncertainty 
increases over time

Thrun et al



Hidden Markov Models

• In the previous example, the robot could use 
sensors to reduce location uncertainty

• In general:
- States not directly observable (uncertainty captured by a 

distribution)

- Uncertain dynamics increase state uncertainty

- Observations: made via sensors can reduce state 
uncertainty

• Solution: Hidden Markov Model
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First Order Hidden Markov Model 
(HMM)

• Set of states: S
• Set of observations: O
• Transition model: P(st|st-1)
• Observation model: P(ot|st)
• Prior: P(s0)
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Example: Robot Localization

• Hidden Markov Model
- S: (x,y) coordinates of the robot on the map

- O: distances to surrounding obstacles (measured by laser 
range fingers or sonar)

- P(st|st-1): movement of the robot with uncertainty

- P(ot|st): uncertainty in the measurements provided by the 
sensors

• Localization corresponds to the query:   
- P(st|ot,...,o1)
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Inference

• There are four common tasks
- Monitoring: P(st|ot,...o1)

- Prediction: P(st+k|ot,...,o1)

- Hindsight: P(sk|ot,...,o1)

- Most likely explanation: argmaxst,...,s1 P(st,...,s1|ot,...,o1)

• What algorithms should we use?
- First 3 can be done with variable elimination and the 4th 

is a variant of variable elimination
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Monitoring

We are interested in the distribution over current states 
given observations: P(st|ot,...,o1)

- Examples: patient monitoring, robot localization
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Prediction

We are interested in distributions over future states 
given observations: P(st+k|ot,...,o1)

- Examples: weather prediction, stock market prediction
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Hindsight

Interested in the distribution over a past state given 
observations

- Example: crime scene investigation
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Most Likely Explanation
We are interested in the most likely sequence of states given 
the observations: argmaxs0,...st P(s0,...,st|ot,...,o1)

- Example: speech recognition

Viterbi algorithm:
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Complexity of Temporal Inference

Hidden Markov Models are Bayes Nets 
with a polytree structure!

Variable elimination is
- Linear with respect to number of time slices

- Linear with respect to largest CPT (P(st|st-1) 
or P(ot|st))
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Dynamic Bayes Nets
What if the number of states or observations are 
exponential?
• Dynamic Bayes Nets

- Idea: Encode states and observations with several 
random variables

- Advantage: Exploit conditional independence and 
save time and space

- Note: HMMs are just DBNs with one state variable 
and one observation variable
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Example: Robot Localization

• States: (x,y) coordinates and heading θ
• Observations: laser and sonar readings, la and 

so
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DBN Complexity
Conditional independence allows us to represent 
the transition and observation models very 
compactly!
• Time and space complexity of inference: 

conditional independence rarely helps
- Inference tends to be exponential in the number of 

state variables

- Intuition: All state variables eventually get correlated

- No better than with HMMs
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Non-Stationary Processes

What if the process is not stationary?
- Solution: Add new state components until 

dynamics are stationary

- Example: Robot navigation based on (x,y,θ) 
is nonstationary when velocity varies
- Solution: Add velocity to state description (x,y,v,θ)

- If velocity varies, then add acceleration,...
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Non-Markovian Processes

What if the process is not Markovian?
- Solution: Add new state components until 

the dynamics are Markovian

- Example: Robot navigation based on (x,y,θ) 
is non-Markovian when influenced by 
battery level
- Solution: Add battery level to state description (x,y,θ,b)
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Markovian Stationary Processes

Problem: Adding components to the state 
description to force a process to be Markovian 
and stationary may significantly increase 
computational complexity

Solution: Try to find the smallest description 
that is self-sufficient (i.e. Markovian and 
stationary)
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Summary
• Stochastic Process

- Stationary 

- Markov assumption

• Hidden Markov Process
- Prediction

- Monitoring

- Hindsight

- Most likely explanation

• Dynamic Bayes Nets
• What to do if the stationary or Markov assumptions do not hold
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