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Markov Chains

® Simplified version of snakes and ladders
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Markov Chain

® Discrete clock pacing interaction of agent with environment,
t=0,1,2,...

® Agent can be in one of a set of states S={0,1,...,11}

® Initial state so=0

® If an agent is in state s, at time t, the state at time st+1 is
determined only by the role of the dice at time t

11 10 S 38 71 6




Markov Chain

® The probability of the next state st+1 does not depend on how the
agent got to the current state st (Markov Property)

® Example: Assume at time t, agent is in state 2
= P(st+1=3|st)=1/6
= P(st+1=7|s1)=1/3
= P(st+1=5|st)=1/6, P(sw+1=6]|st)=1/6, P(St+1=8|st)=1/6

= Game is completely described by the probability distribution of the next
state given the current state
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Markov Chain: Formal
Representation

® State space S={0,1,2,3,4,5,6,7,8,9,10,11}
® Transition probability matrix P

(0 1/6 1/6 1/6 0 1/6 1/6 1/6 0 0 0 O
0 0 1/6 1/6 0 1/6 1/6 1/3 0 0 0 0
0 0 0 1/6 0 1/6 1/6 1/3 1/6 0 0 0
0o 0 0 0 0 1/6 1/6 1/3 1/6 1/6 0 0

P=1|(0o 0o 0o o000 0 1 0 0 0 0
0 0 0 0 0 0 1/6 1/6 1/6 1/6 1/6 1/6
0o 0 0 0 0 0O 0 1/6 1/6 1/6 1/6 1/3
0o 0 0 0 0 0O 0 0 1/6 1/6 1/6 1/2
o 0 0 0 0 0O 0O 0 0 1/6 1/6 2/3
0o 0 0 0 0 0 O 0 0 0 1/6 5/6
o0 0 000 O 0 0 0 0 1
o0 0 00O O 0 0 0 0 1

PiJ:PI"Ob(NCXTZSJl ThiS:Si)



Discounted Rewards

® An assistant professor gets paid, say,
30K per year

® How much, in total, will the assistant
professor earn in their lifetime?

30+30+30+30+...= °.
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Discounted Rewards

® A reward in the future is not worth quite as much as a
reward now

= Because of chance of inflation
= Because of chance of obliteration
® Example:

= Being promised $10000 next year is worth only 90% as much
as receiving $10000 now

® Assuming payment n years in the future is worth only
(0.9)" of payment now, what is the assistant
professor’s Future Discounted Sum of Rewards?



Discount Factors

® Used in economics and probabilistic
decision-making all the time

® Discounted sum of future awards using
discount factor y is

= Reward now + y(reward in 1 time step) +
v4(reward in 2 time steps) + y3(reward in 3
time steps) + ...
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Markov System of Rewards

Set of states S={s1,S>,...,Sn}
Each state has a reward {ry,r2,...,n}
Discount factor y, O<y<1

Transition probability matrix, P

Py Pip oo Py | _ _ .
b | Pn P o By P; = Prob(Next = s;| This = s)
_Pnl Ppo -+ Pnn_

On each step:

*Assume state IS S;

*Get reward i

*Randomly move to state s; with probabillity Pj
*All future rewards are discounted by y
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Solving a Markov Process

® Write U*(si) = expected discounted sum
of future rewards starting at state s

= U*(si)=ri+ty(PiiU*(si)+Pi2U*(s2)+...+PinU*(Sn))

[ U*(51) \ (1) / P11 Pip -+ Py \
\U*(.Sn)} \T’”} \P’nl Poy - P’n/n,}

Closed form: U=(I-yP)'R
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Solving a Markov System using
Matrix Inversion

® Upside:
= You get an exact number!

® Downside:

= |If you have n states you are solving an n by
n system of equations!
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Value lteration

® Define
- Ul(si)=Expected discounted sum of rewards over next 1 time step
- U?(si)=Expected discounted sum of rewards over next 2 time steps

- U3(si)=Expected discounted sum of rewards over next 3 time steps

- UK(sj)=Expected discounted sum of rewards over next k time steps

UI(S;)=r,
U2(S)=r+vX-1" piU'(s;)
Uk+1(5i):r'i+VZj:1n pijUk(Sj)
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Example: Value Iteration
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Value lteration

Ul=R, U2=R+yPU! k=2
While max|U(si)-Ux1(si)|>¢
k=k+1
Uk=R+yPUK1

Note: As k—=, UK(si)—U*(s))

This Is often faster than matrix inversion
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Markov Decision Process
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Markov Decision Process

Set of states S={s1,S>,...,Sn}

Each state has a reward {ri,r2,...,rn}
Set of actions {as,...,am}

Discount factor y, O<y<1

Transition probability function , P

Pijk: Prob(Next = s; ‘ This = s;and you took action ax)

On each step:

*Assume state IS S;

*Get reward i

*Choose action ax

*Randomly move to state s; with probability PiK
*All future rewards are discounted by y
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Planning in MDPs

® The goal of an agent in an MDP is to be
rational

= Maximize its expected utility

= But maximizing immediate utility i1s not good
enough

= Great action now can lead to certain death tomorrow

® Goal is to maximize its long term reward

= Do this by finding a policy that has high return
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Policies

® A policy is a mapping
from states to actions

Policy 1

PU |S

PF__|A Policy 2

RU |S

RF_ | A PU_|A
PF |A
RU |A
RF [A
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Fact

® For every MDP there exists an optimal
policy

® It is the policy such that for every
possible start state, there Is no better
option that to follow the policy

Our goal: To find this policy!
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Finding the Optimal Policy

® Naive approach:

= Run through all possible policies and select
the best
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Optimal Value Function

® Define V*(si) to be the expected
discounted future rewards

= Starting from state si, assuming we use the
optimal policy

® Define V'(si) to be the possible sum of
discounted rewards | can get If | start at
state si and live for t time steps

- Note: Vi(si)=r
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Bellman's Equation

‘Vm(si)zmaxk [ri+y> " P ijk VT(S;)]‘

® Now we can do Value lteration!
- Compute Vi(si) for all i
- Compute V?4(si) for all i
= Compute Vi(si) for all i

- Until convergence maxi|Vt*i(s)-Vi(si)|<e

aka Dynamic Programming
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t Vt(PU) Vt(PF) Vt(RU) Vt(RF)
1 0 0 10 10

2 0 4.5 14.5 19

3 2.03 8.55 16.53 25.08
4 4.76 12.20 18.35 28.72
5 7.63 15.07 20.40 31.18
6 10.22 17.46 22.61 33.21
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Finding the Optimal Policy

® Compute V*(si) for all i using value
iteration

® Define the best action in state sij as

argmax(ri+yd iPi¥ V*(s))]
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Policy Iteration

There are other ways of finding the optimal
policy
® Policy Iteration

= Alternates between two steps

= Policy evaluation: Given 1T, compute Vi=V"

= Policy improvement: Calculate a new Tri+1 using 1-step
lookahead
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Policy Iteration Algorithm

® Start with random policy 1
® Repeat until you stop changing the policy
= Compute long term reward for each s;, using 1

= For each state si

If

max [r;+7 Y PFEV*(s;)| >+ PIIV*(s))
J J

Then

k yr*
m(si) < arg Max | 7 +’)’sz‘,jv (55)
J
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Summary

MDPs describe planning tasks in stochastic
worlds

Goal of the agent Is to maximize Its expected
return

Value functions estimate the expected return

In finite MDPs there Is a unigue optimal policy

= Dynamic programing can be used to find it
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Summary

® Good news

= finding optimal policy Iis polynomial in number of states

® Bad news

= finding optimal policy Is polynomial in number of states

® Number of states tends to be very very large

= exponential in number of state variables

® In practice, can handle problems with up to 10
million states
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Extensions

® In “real life” agents may not know what state they are in

= Partial observability

® Partially Observable MDPs (POMDPS)

= Set of states

= Set of actions

= Each state has a reward

= Transition probability function P(st|at-1,St-1)
- Set of observations O={04,...,0«}

= Observation model P(ot|st)
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POMDPs

® Agent maintains a belief state, b
= Probabillity distribution over all possible states

= b(s) Is the probability assigned to state s

® Insight: optimal action depends only on
agent’s current belief state

= Policy iIs a mapping from belief states to
actions
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POMDPs

® Decision cycle of an agent
= Given current b, execute action a=11*(b)
= Receive observation o

= Update current belief state

= b'(s’)=a0O(o|s’)zsP(s’|a,s)b(s)

® Possible to write a POMDP as an MDP by
summing over all actual states s’ that an agent
might reach

= P(b’|la,b)=2.P(b’|o,a,b)2sO(0|s’)2sP(s’|a,s)b(s)
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POMDPs

® Complications

= Our (new) MDP has a continuous state
space

= In general, finding (approximately) optimal
policies is difficult (PSPACE-hard)

= Problems with even a few dozen states are
often Iinfeasible

= New techniques, take advantage of structure,....
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