Introduction to
Decision Making

CS 486/686: Introduction to Artificial Intelligence

Outline

® Utility Theory

® Decision Trees

Decision Making Under Uncertainty

® | give a robot a planning problem: “ | want
coffee”

= But the coffee maker is broken: Robot reports “No
plan!”

o P

r NCLDY

Decision Making Under Uncertainty

® | want more robust behaviour

® | want my robot to know what to do when
my primary goal Is not satisfied

= Provide it with some indication of my preferences
over alternatives

= e.g. coffee better than tea, tea better than water, water better than
nothing,...

Decision Making Under Uncertainty

® But it is more complicated than that

= |t could walit 45 minutes for the coffee maker
to be fixed

® What is better?

= Tea now?

= Coffee In 45 minutes?

Preferences

® A preference ordering z is a ranking over all
possible states of the world s

® These could be outcomes of actions, truth
assignments, states in a search problem, etc

= S z t. state s Is at least as good as state t
= S >t state s Is strictly preferred to state t

= s ~t:. agent is ambivalent between states s and t

Preferences

® If an agent’s actions are deterministic,
then we know what states will occur

® If an agent’s actions are not deterministic,
then we represent this by lotteries

= Probabillity distribution over outcomes

= Lottery L=[p4,S1;P2,S5;---:Pn,Sn]

= s1 occurs with probability p1, s2 occurs with probability pz, ...

AXIOMS

® Orderability: Given 2 states A and B
- (AzB)V(BzA)V(A~B)
® Transitivity: Given 3 states A, B, C
- (AzZB)A(B=C)—(AxC)
® Continuity:
- AzZBxzC—kExists p, [p,A;(1-p),C]~-B
® Substitutability
- A~B—[p,A;1-p,C]~[p,B,1-p,C]
® Monotonicity:
= (AzZB)—(p2gq<[p,A;1-p,B]Z[q,A;1-q,B]
® Decomposability
= [p.A1-p[q.B;1-q,C]]~[p.A; (1-p)a.B;(1-p)(1-9),C]

Why Impose These Conditions?

® Structure of preference ordering imposes
certain “rationality requirements”

= It is a weak ordering

® Example: Why transitivity?

Money Pump

A>B>C>A

A
1/ \c
B

C

‘\]/

Decision Problem: Certainty

® A decision problem under certainty is <D,
S, f, =Z> where

= D Is a set of decisions
= S Is a set of outcomes or states
= fis an outcome function f:D—S

= Z IS a preference ordering over S

® A solution to a decision problem is any d* in
D such that f(d*)=f(d) for all d In D

11

Computational Issues

® At some level, a solution to a decision problem is
trivial
= But decisions and outcome functions are rarely specified
explicitly

= For example: In search you construct the set of decisions by
exploring search paths

= Do not know the outcomes in advance

Preferences
i c, b, bc
e

@/ c, b, ~bc
=1 P
% >

c, ~b, bc

(4

12

Decision Making Under Uncertainty

® Suppose actions do not have deterministic outcomes

= Example: When the robot pours coffee, 20% of the time it spills it, making
a mess

= Preferences: ¢c,~mess>~c,~mess>~C, mess

® What should your robot do?

= Decision getcoffee leads to a good outcome and a bad outcome with some
probability

= Decision donothing leads to a medium outcome
C, ~MesSS

getcoffee< donothing » ~C,~Mmess
~C, mess

13

Utilities

® Rather than just ranking outcomes, we need to
guantify our degree of preference

= How much more we prefer one outcome to another (e.g
C to ~mess)

® A utility function U:S—R associates a real-valued
utility to each outcome

= Utility measures your degree of preference for s

® U induces a preference ordering Zu over S where
szut if and only if U(s)=2U(t)

14

Expected Utility

® Under conditions of uncertainty,
decision d induces a distribution over
possible outcomes

= Pd(s) is the probability of outcome s under
decision d

® The expected utility of decision d is
EU(d)=)sins Pda(s)U(S)

15

Example

C, ~MESS

getcoffee< donothing » ~C,~Mmess
~C, mess

® When my robot pours coffee, it makes a mess 20% of the time
® If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then

= EU(getcoffee)=(0.8)10+(0.2)0=8

= EU(donothing)=5
® If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then

= EU(getcoffee)=8

= EU(donothing)=9

16

Maximum Expected Utility Principle

® Principle of Maximum Expected Utility

= The optimal decision under conditions of
uncertainty Is that with the greatest
expected utility

® Robot example:
= First case: optimal decision is getcoffee

= Second case: optimal decision Is donothing

17

Decision Problem: Uncertainty

® A decision problem under uncertainty is <D,S,P,U>
= Set of decisions D

= Set of outcomes S

= Outcome function P:D—A(S)

= A(S) is the set of distributions over S

= Utility function U over S

® A solution is any d* in D such that EU(d*)=EU(d) for
alldinD

18

Notes: Expected Utility

® This viewpoint accounts for
= Uncertainty In action outcomes
= Uncertainty Iin state of knowledge

= Any combination of the two

0.8
02 \}
b\ s3 4
N7
s4
Stochastic actions
Uncertain knowledge

19

Notes: Expected Utility

® Why Maximum Expected Utility?

® Where do these utilities come from?

= Preference elicitation

20

Notes: Expected Utility

® Utility functions need not be unique

= If you multiply U by a positive constant, all decisions have
the same relative utility

= If you add a constant to U, then the same thing Is true

® U is unique up to a positive affine transformation

If d*=argmax, Pr(d)U(d)
then
d*=argmax4Pr(d)[aU(d)+b]
a>0

21

What are the Complications?

® Outcome space can be large
= State space can be huge
= Do not want to spell out distributions explicitly

= Solution: Use Bayes Nets (or related Influence diagrams)

® Decision space is large

= Usually decisions are not one-shot

= Sequential choice

= If we treat each plan as a distinct decision, then the space is too large to handle directly

= Solution: Use dynamic programming to construct optimal plans

22

What are the Complications?

® Outcome space can be

large ® Decision space is large

® Usually decisions are not one-
shot

® Do not want to spell out .

distributions explicitly

® State space can be huge

Sequential choice

® If we treat each plan as a distinct decision,

- h h ' I h le di I
® SO|UtIOnZ Use Bayes Nets then the space is too large to handle directly

(or related Influence ® Solution: Use dynamic
diagrams) programming to construct
optimal plans

23

Simple Example

® Two actions: a,b
= That is, either [a,a], [a,b], [b,a], [b,D]
® We can execute two actions in sequence

® Actions are stochastic: action a induces distribution
Pa(sils)) over states

= Pa(s2|s1)=0.9 means that the prob. of moving to state s2
when taking action a in state s1is 0.9

= Similar distribution for action b

® How good is a particular plan?

24

Distributions for Action Sequences

o Ty
/\ /\.

/\ /\ /\ /\

5/\5 €/\4 a/\s Z/\3 1/\.9 a/\.a a/\.a Z/\3

s4 sd5 sb6 s7 s8 s9 s10 s11 s14 s15 s16 s17 s18 s19 s20 s21

25

How Good Is a Sequence?

® We associate utilities with the final
outcome

= How good is it to end up at sS4, Ss, Se, ...
® Now we have:
- EU(aa)=.45U(s4)+.45U(ss5)+.02U(s8)+.08(S9)
= EU(ab)=.54U(ss)+.36U(s7)+.07U(S10)+.03U(S11)

= elc

26

Utilities for Action Sequences

O/\O
/\ /\

/\ FARNAN /

$/\5 c/\.4 1\8 7/\3 1/\.9 2/\8 %\8 7/\.3

u(s4) u(ss)u(sb6) etc... u(s21)

Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)

27

Why Sequences Might Be Bad

s

/\,
/\ /\

/\ /\ /\ /\

5/\.5 </\.4 a/\s Z/\.3 1/\.9 z/\.s a/\.s 1/\3

s4 s5 s6b s7 s8 s9 s10 s11 s14 s15 s16 s17 s18 s19 s20 s21

® Suppose we do a first; we could reach sz or s3
~ Ats2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)

~ At s3assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)

® After doing a first, we want to do a next if we reach sz, but we
want to be b second if we reach ss

28

Policies

® We want to consider policies, not sequences of actions (plans)

® We have 8 policies for the decision tree:

[a;1fs2a,ifs3a] [b;ifsl2a,ifsl3a]
[a;ifs2a,ifs3b] [b;ifsl2a,ifsl3Db]
[@;ifs2b,iss3a] [b;ifsl2Db,ifsl3a]
[a;if s2 b, ifs3 b] [b;ifsl2b.if s13 b]

® We have 4 plans
= [a;a], [a;b], [b;a], [b;b]

= Note: each plans corresponds to a policy so we can only gain by
allowing the decision maker to use policies

29

Evaluating Policies

® Number of plans (sequences) of length k

- Exponential in k: JAJ¥if A is the action set

® Number of policies is much larger

- If Alis the action set and O is the outcome set, then we have (JA||O|)X policies

® Fortunately, dynamic programming can be used
= Suppose EU(a)>EU(b) at s2
= Never consider a policy that does anything else at s2

® How to do this?

= Back values up the tree much like minimax search

30

Decision Trees

® Squares denote

choice nodes
(decision nodes) a X
® Circles denote chance ‘/ \‘
nodes o O
9\ 7 \s8
® Uncertainty regarding
action effects 5 2 4 3

® Terminal nodes
labelled with utilities

31

Evaluating Decision Trees

® Procedure is exactly like game trees except

= "MIN” is “nature” who chooses outcomes at
chance nodes with specified probabllity

= Average instead of minimize

® Back values up the tree
= U(t) defined for terminal nodes
= U(n)=avg {U(c):c a child of n} if n Is chance node

= U(n)=max{U(c:c is child of n} if n Is a choice node

32

Evaluating a Decision Tree

Decision Tree Policles

® Note that we don’t just compute values, but
policies for the tree -

® A policy assigns a decision to each choice @V \P@
node in the tree i VAN
s2 s3 °
® Some policies can’t be distinguished in &N /N
- (23 :
terms of their expected values 9\ 8\ :
5 2 3 4

= Example: If a policy chooses a at s1, the choice
at s4 does not matter because it won’t be
reached

= Two policies are implementationally
Indistinguishable if they disagree only on
unreachable nodes

34

Computational Issues

® Savings compared to explicit policy evaluation
IS substantial

® Let n=]A| and m=|O|

- Evaluate only O((nm)9) nodes in tree of depth d

- Total computational cost is thus O((nm)d)

- Note that there are also (nm)? policies
- Evaluating a single policy requires O(m?9)

- Total computation for explicitly evaluating each policy would be O(n9m?29)

35

Computational Issues

Tree size: Grows exponentially with depth

= Possible solutions: Bounded lookahead,
heuristic search procedures

Full Observability: We must know the Initial
state and outcome of each action

= Possible solutions: Handcrafted decision trees,
more general policies based on observations

36

Other Issues

Specification: Suppose each state Is an
assignment of values to variables

= Representing action probabllity distributions is
complex

= Large branching factor

® Possible solutions: We will discuss these

/ later in the semester

= Bayes Net representations

= Solve problems using decision networks

37

Key Assumption: Observability

Full observability: We must know the initial
state and outcome of each action

= To implement a policy we must be able to
resolve the uncertainty of any chance node
that Is followed by a decision node

= e.g. After doing a at s1, we must know which of the outcomes (s2
or s3) was realized so that we know what action to take next

= Note: We don't need to resolve the uncertainty
at a chance node if no decision follows it

38

Partial Observabllity

o If we push

(unobservable) dru O'ﬂ“

uncertainty to the S—— = T

“end of the tree” __Fluy

then we can drug _

evaluate the tree B&

- often used in ru

handcrafted No —— T Om
decision trees rescr

\‘ ,ﬂ»
Fever drug? O —
Mlria

Yes
oo angy O
Here we push uncertainty re: \ Mlria
disease to end of tree. All chance \z‘ _Fluy
drug O m’
a

Exarninel
Patient

outcomes preceding decision are
fully observable.

39

Large State Spaces (Variables)

® To represent outcomes of actions or decisions, we need to
specify distributions

= P(s|d): probability of outcome s given decision d
= P(s|a,s’): probability of state s given action a was taken in state s’

® Note that the state space is exponential in the number of
variables

= Spelling out distributions explicitly is intractable In a couple of
weeks

® Bayes Nets can be used to represent actions

= Joint distribution over variables, conditioned on action/decision and
previous state

40

Summary

Basic properties of preferences
Relationship between preferences and
utilities

Principle of Maximum Expected Utility

Decision Trees

41

