Introduction to Decision Making

CS 486/686: Introduction to Artificial Intelligence
Outline

• Utility Theory
• Decision Trees
Decision Making Under Uncertainty

• I give a robot a planning problem: “I want coffee”
 - But the coffee maker is broken: Robot reports “No plan!”
Decision Making Under Uncertainty

• I want more robust behaviour
• I want my robot to know what to do when my primary goal is not satisfied
 - Provide it with some indication of my preferences over alternatives
 - e.g. coffee better than tea, tea better than water, water better than nothing,...
Decision Making Under Uncertainty

• But it is more complicated than that
 - It could wait 45 minutes for the coffee maker to be fixed

• What is better?
 - Tea now?
 - Coffee in 45 minutes?
Preferences

• A preference ordering \succeq is a ranking over all possible states of the world s

• These could be outcomes of actions, truth assignments, states in a search problem, etc

- $s \succeq t$: state s is at least as good as state t
- $s > t$: state s is strictly preferred to state t
- $s \sim t$: agent is ambivalent between states s and t
Preferences

• If an agent’s actions are deterministic, then we know what states will occur.
• If an agent’s actions are not deterministic, then we represent this by lotteries.
 - Probability distribution over outcomes
 - Lottery $L=[p_1,s_1;p_2,s_2;...;p_n,s_n]$ where s_1 occurs with probability p_1, s_2 occurs with probability p_2, ...
• Orderability: Given 2 states A and B
 - \((A \gneq B) \lor (B \gneq A) \lor (A \sim B)\)

• Transitivity: Given 3 states A, B, C
 - \((A \gneq B) \land (B \gneq C) \rightarrow (A \gneq C)\)

• Continuity:
 - \(A \gneq B \geq C \rightarrow \text{Exists } p, [p, A; (1-p), C] \sim B\)

• Substitutability
 - \(A \sim B \rightarrow [p, A; 1-p, C] \sim [p, B, 1-p, C]\)

• Monotonicity:
 - \((A \gneq B) \rightarrow (p \geq q \leftrightarrow [p, A; 1-p, B] \geq [q, A; 1-q, B])\)

• Decomposability
 - \([p, A; 1-p[q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C]\)
Why Impose These Conditions?

• Structure of preference ordering imposes certain “rationality requirements”

 - It is a weak ordering

• Example: Why transitivity?
Money Pump

A>B>C>A
Decision Problem: Certainty

- **A decision problem under certainty** is <$D, S, f, ≿>$ where
 - D is a set of decisions
 - S is a set of outcomes or states
 - f is an outcome function $f:D \rightarrow S$
 - $≿$ is a preference ordering over S

- **A solution** to a decision problem is any d^* in D such that $f(d^*)≿f(d)$ for all d in D
Computational Issues

• At some level, a solution to a decision problem is trivial
 - But decisions and outcome functions are rarely specified explicitly
 - For example: In search you construct the set of decisions by exploring search paths
 - Do not know the outcomes in advance

Preferences
 - c, b, bc
 - $c, b, \sim bc$
 - $c, \sim b, \sim bc$
 - $c, \sim b, bc$
• Suppose actions do not have deterministic outcomes
 - Example: When the robot pours coffee, 20% of the time it spills it, making a mess
 - Preferences: $c, \neg \text{mess} > \neg c, \neg \text{mess} > \neg c, \text{mess}$

• What should your robot do?
 - Decision \textit{getcoffee} leads to a good outcome and a bad outcome with some probability
 - Decision \textit{donothing} leads to a medium outcome
Utilities

• Rather than just ranking outcomes, we need to quantify our degree of preference
 - How much more we prefer one outcome to another (e.g. c to \sim mess)

• A utility function $U: S \rightarrow \mathbb{R}$ associates a real-valued utility to each outcome
 - Utility measures your degree of preference for s

• U induces a preference ordering \succeq_U over S where $s \succeq_U t$ if and only if $U(s) \geq U(t)$
Expected Utility

• Under conditions of uncertainty, decision d induces a distribution over possible outcomes

 - \(P_d(s) \) is the probability of outcome s under decision d

• The **expected utility** of decision d is

\[
EU(d) = \sum_{s \in S} P_d(s)U(s)
\]
• When my robot pours coffee, it makes a mess 20% of the time

• If $U(c, \neg ms)=10$, $U(\neg c, \neg ms)=5$, $U(\neg c, ms)=0$ then
 - $EU(getcoffee)=(0.8)10+(0.2)0=8$
 - $EU(donthing)=5$

• If $U(c, \neg ms)=10$, $U(\neg c, \neg ms)=9$, $U(\neg c, ms)=0$ then
 - $EU(getcoffee)=8$
 - $EU(donthing)=9$
Maximum Expected Utility Principle

• Principle of Maximum Expected Utility
 - The optimal decision under conditions of uncertainty is that with the greatest expected utility

• Robot example:
 - First case: optimal decision is getcoffee
 - Second case: optimal decision is donothing
Decision Problem: Uncertainty

• A decision problem under uncertainty is \(<D,S,P,U>\)
 - Set of decisions \(D\)
 - Set of outcomes \(S\)
 - Outcome function \(P:D \rightarrow \Delta(S)\)
 - \(\Delta(S)\) is the set of distributions over \(S\)
 - Utility function \(U\) over \(S\)

• A solution is any \(d^*\) in \(D\) such that \(EU(d^*) \geq EU(d)\) for all \(d\) in \(D\)
• This viewpoint accounts for
 - Uncertainty in action outcomes
 - Uncertainty in state of knowledge
 - Any combination of the two
Notes: Expected Utility

• Why Maximum Expected Utility?

• Where do these utilities come from?
 - Preference elicitation
• Utility functions need not be unique
 - If you multiply \(U \) by a positive constant, all decisions have the same relative utility
 - If you add a constant to \(U \), then the same thing is true
• \(U \) is unique up to a positive affine transformation

If \(d^* = \text{argmax}_d \ Pr(d)U(d) \) then
\[
d^* = \text{argmax}_d Pr(d)[aU(d) + b]
\]
a > 0
What are the Complications?

• Outcome space can be large
 - State space can be huge
 - Do not want to spell out distributions explicitly
 - **Solution**: Use Bayes Nets (or related Influence diagrams)

• Decision space is large
 - Usually decisions are not one-shot
 - Sequential choice
 - If we treat each plan as a distinct decision, then the space is too large to handle directly
 - **Solution**: Use dynamic programming to construct optimal plans
What are the Complications?

• Outcome space can be large
 • State space can be huge
 • Do not want to spell out distributions explicitly
 • **Solution**: Use Bayes Nets (or related Influence diagrams)

• Decision space is large
 • Usually decisions are not one-shot
 • Sequential choice
 • If we treat each plan as a distinct decision, then the space is too large to handle directly
 • **Solution**: Use dynamic programming to construct optimal plans
Simple Example

• Two actions: a, b
 - That is, either [a,a], [a,b], [b,a], [b,b]
• We can execute two actions in sequence
• Actions are stochastic: action a induces distribution $P_a(s_i|s_j)$ over states
 - $P_a(s_2|s_1)=0.9$ means that the prob. of moving to state s_2 when taking action a in state s_1 is 0.9
 - Similar distribution for action b
• How good is a particular plan?
Distributions for Action Sequences

![Diagram showing distributions for action sequences with nodes s1, s2, s3, s12, and s13, and actions a and b with associated probabilities.](image-url)
How Good is a Sequence?

• We associate utilities with the **final outcome**
 - How good is it to end up at s_4, s_5, s_6, ...

• Now we have:
 - $EU(aa) = .45U(s_4) + .45U(s_5) + .02U(s_8) + .08(s_9)$
 - $EU(ab) = .54U(s_6) + .36U(s_7) + .07U(s_{10}) + .03U(s_{11})$
 - etc
Utilities for Action Sequences

Looks a lot like a game tree, but with chance nodes instead of min nodes. (We average instead of minimizing)
Why Sequences Might Be Bad

• Suppose we do \(a \) first; we could reach \(s_2 \) or \(s_3 \)
 - At \(s_2 \), assume: \(EU(a) = 0.5U(s_4) + 0.5U(s_5) > EU(b) = 0.6U(s_6) + 0.4U(s_7) \)
 - At \(s_3 \), assume: \(EU(a) = 0.2U(s_8) + 0.8U(s_9) < EU(b) = 0.7U(s_{10}) + 0.3U(s_{11}) \)

• After doing \(a \) first, we want to do \(a \) next if we reach \(s_2 \), but we want to be \(b \) second if we reach \(s_3 \)
Policies

• We want to consider **policies**, not sequences of actions (plans)

• We have 8 policies for the decision tree:

 - [a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
 - [a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
 - [a; if s2 b, is s3 a] [b; if s12 b, if s13 a]
 - [a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

• We have 4 plans

 - [a;a], [a;b], [b;a], [b;b]

 - **Note**: each plans corresponds to a policy so we can only **gain** by allowing the decision maker to use policies
Evaluating Policies

• Number of plans (sequences) of length k
 - Exponential in k: \(|A|^k \) if A is the action set

• Number of policies is much larger
 - If A is the action set and O is the outcome set, then we have \((|A||O|)^k \) policies

• Fortunately, dynamic programming can be used
 - Suppose \(EU(a) > EU(b) \) at s2
 - Never consider a policy that does anything else at s2

• How to do this?
 - Back values up the tree much like minimax search
Decision Trees

- Squares denote choice nodes (decision nodes)
- Circles denote chance nodes
 - Uncertainty regarding action effects
- Terminal nodes labelled with utilities
Evaluating Decision Trees

- Procedure is exactly like game trees except
 - “MIN” is “nature” who chooses outcomes at chance nodes with specified probability
 - Average instead of minimize

- Back values up the tree
 - U(t) defined for terminal nodes
 - U(n)=avg {U(c):c a child of n} if n is chance node
 - U(n)=max{U(c:c is child of n)} if n is a choice node
Evaluating a Decision Tree

![Decision Tree Diagram]
Decision Tree Policies

• Note that we don’t just compute values, but policies for the tree
• A **policy** assigns a decision to each choice node in the tree
• Some policies can’t be distinguished in terms of their expected values
 - Example: If a policy chooses a at s1, the choice at s4 does not matter because it won’t be reached
 - Two policies are **implementationally indistinguishable** if they disagree only on unreachable nodes
Computational Issues

• Savings compared to explicit policy evaluation is substantial

• Let \(n = |A| \) and \(m = |O| \)
 - Evaluate only \(O((nm)^d) \) nodes in tree of depth \(d \)
 - Total computational cost is thus \(O((nm)^d) \)
 - Note that there are also \((nm)^d \) policies
 - Evaluating a single policy requires \(O(m^d) \)
 - Total computation for explicitly evaluating each policy would be \(O(n^d m^{2d}) \)
Computational Issues

Tree size: Grows exponentially with depth
- Possible solutions: Bounded lookahead, heuristic search procedures

Full Observability: We must know the initial state and outcome of each action
- Possible solutions: Handcrafted decision trees, more general policies based on observations
Other Issues

Specification: Suppose each state is an assignment of values to variables

- Representing action probability distributions is complex
 - Large branching factor

• Possible solutions:
 - Bayes Net representations
 - Solve problems using decision networks

We will discuss these later in the semester
Key Assumption: Observability

Full observability: We must know the initial state and outcome of each action

- To implement a policy we must be able to resolve the uncertainty of any chance node that is followed by a decision node
 - e.g. After doing a at s1, we must know which of the outcomes (s2 or s3) was realized so that we know what action to take next

- Note: We don’t need to resolve the uncertainty at a chance node if no decision follows it
Partial Observability

- If we push (unobservable) uncertainty to the “end of the tree” then we can evaluate the tree
 - often used in handcrafted decision trees

Here we push uncertainty re: disease to end of tree. All chance outcomes preceding decision are fully observable.
Large State Spaces (Variables)

• To represent outcomes of actions or decisions, we need to specify distributions
 - $P(s|d)$: probability of outcome s given decision d
 - $P(s|a,s')$: probability of state s given action a was taken in state s'
• Note that the state space is exponential in the number of variables
 - Spelling out distributions explicitly is intractable
• Bayes Nets can be used to represent actions
 - Joint distribution over variables, conditioned on action/decision and previous state
Summary

• Basic properties of preferences
• Relationship between preferences and utilities
• Principle of Maximum Expected Utility
• Decision Trees