
Adversarial Search

CS 486/686: Introduction to Artificial Intelligence

1

Introduction

2

• So far we have only been concerned with a
single agent

• Today, we introduce an adversary!

Outline

• Games
• Minimax search
• Alpha-beta pruning
• Evaluation functions
• Coping with chance

3

Games

• Games are the oldest, most well-studied domain in AI
• Why?

- They are fun

- Easy to represent, rules are clear

- State spaces can be very large
- In chess, the search tree has ~10154 nodes

- Like the “real world” in that decisions have to be made and time is
important

- Easy to determine when a program is doing well

4

Types of Games
• Perfect vs Imperfect Information

- Perfect information: You can see the entire state of
the game

- Imperfect information:

• Deterministic vs Stochastic
- Deterministic: change in state is fully controlled by

the players

- Stochastic: change in state is partially determined by
chance

5

Games as Search Problems

2-player perfect information game
• State:
• Successor function:
• Terminal state:
• Utility function:
• Solution:

6

Game Search Challenge

What makes game search challenging?
- There is an opponent

- The opponent is malicious
- it wants to win (by making you lose)

- We need to take this into account when choosing moves

Notation:
- MAX player wants to maximize its utility

- MIN player wants to minimize its utility

7

Example

MAX’s job is to use the
search tree to
determine the best
move

8

Optimal Strategies
In standard search

- Optimal solution is sequence of moves leading to a goal
state

Strategy (from MAX’s perspective)
- Specify a move for the initial state

- Specify a move for all possible states arising from MIN’s
response

- Then all possible responses to all of MIN’s responses to
MAX’s previous moves

- ...

9

Optimal Strategies
Goal: Find optimal strategy

• What do we mean by optimal?
- Strategy that leads to outcomes at least as good as any

other strategy, given that MIN is playing optimally
- Equilibrium (game theory)

Today we focus mainly on zero-sum games of perfect
information

- Easy games according to game theory

10

Minimax Value

Utility(n) if n is a terminal state

Maxs in Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins in Succ(n) MINIMAX-VALUE(s) is n is a MIN node

MINIMAX-VALUE(n) =

ply

11

Properties of Minimax

• Complete:
• Time complexity:
• Space complexity:
• Optimal:

12

Minimax and Multi-Player
Games

13

Question

Can we now write a program that will play
chess reasonably well?

14

Question

Can we now write a program that will play
chess reasonably well?

For chess b~35 and m~100

15

Alpha-Beta Pruning

If we are smart (and lucky) we can do pruning
- Eliminate large parts of the tree from

consideration

Alpha-beta pruning applied to a minimax tree

16

Alpha-Beta Pruding
• Alpha:

- Value of best (highest value) choice we have found so far on
path for MAX

• Beta:
- Value of best (lowest value) choice we have found so far on

path for MIN

• Update alpha and beta as search continues
• Prune as soon as value of current node is known to

be worse than current alpha or beta values for MAX or
MIN

17

Example
MAX

MIN

12 83 2 14 5 2

18

30 12

Properties of Alpha-Beta

19

• Can pruning result in a different outcome
than minimax search?

• How much can be pruned when
searching?

Real-Time Decisions

Alpha-Beta can be a huge improvement over
minimax

- Still not good enough
- Need to search to terminal states for at least part of search space

- Need to make decisions quickly

Solution
- Heuristic evaluation function + cutoff tests

20

Evaluation Functions

• Apply an evaluation function to a
state

- If terminal state, function returns actual
utility

- If non-terminal, function returns estimate
of the expected utility

• Function must be fast to compute

21

Evaluation Functions

• How do we get evaluation functions?
- Expert knowledge

- Learned from experience

• Look for features of states
- Weighted linear function Eval(s)=∑i wifi(s)

22

Cutting Off Search
Do we have to search to terminal states?

- No! Cut search early and apply evaluation function

When?
- Arbitrarily (but deeper is better)
- Quiescent states

- States that are “stable”

- Singular extensions
- Searching deeper when you have a move that is “clearly better”

- Can be used to avoid the horizon effect

23

Cutting Off Search
How deep?

Novice player
- 5-ply (minimax)

Master player
- 10-ply (alpha-beta)

Grandmaster
- 14-ply + fantastic evaluation function, opening and endgame

databases,...

24

Stochastic Games

25

Stochastic Games

• Need to consider best/worst cases
+ probability they will occur

• Recall: Expected value of a random
variable x E[x]=∑x in X P(x)x

• Expectiminimax: minimax but at
chance nodes compute the
expected value

26

Expectiminimax

27

Expectiminimax

WARNING: exact values do matter! Order-preserving
transformations of the evaluation function can change the choice
of moves. Must have positive linear transformations only

28

What about Go?

29

What about Go?
Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of
simulated plays

Upper Confidence
Bounds for Trees
(UCT): “Minimax
search” using UCB

30

Summary
• Games pose lots of fascinating challenges

for AI researchers
• Minimax search allows us to play optimally

against an optimal opponent
• Alpha-beta pruning allows us to reduce the

search space
• A good evaluation function is key to doing

well
• Games are fun!

31

