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Introduction
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• So far we have only been concerned with a 
single agent

• Today, we introduce an adversary!



Outline

• Games
• Minimax search
• Alpha-beta pruning
• Evaluation functions
• Coping with chance

3



Games

• Games are the oldest, most well-studied domain in AI
• Why?

- They are fun

- Easy to represent, rules are clear

- State spaces can be very large
- In chess, the search tree has ~10154 nodes

- Like the “real world” in that decisions have to be made and time is 
important

- Easy to determine when a program is doing well
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Types of Games
• Perfect vs Imperfect Information

- Perfect information: You can see the entire state of 
the game

- Imperfect information:

• Deterministic vs Stochastic
- Deterministic: change in state is fully controlled by 

the players

- Stochastic: change in state is partially determined by 
chance
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Games as Search Problems

2-player perfect information game
• State: 
• Successor function: 
• Terminal state:
• Utility function:
• Solution:
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Game Search Challenge

What makes game search challenging?
- There is an opponent

- The opponent is malicious
- it wants to win (by making you lose)

- We need to take this into account when choosing moves

Notation:
- MAX player wants to maximize its utility

- MIN player wants to minimize its utility
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Example

MAX’s job is to use the 
search tree to 
determine the best 
move
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Optimal Strategies
In standard search

- Optimal solution is sequence of moves leading to a goal 
state

Strategy (from MAX’s perspective)
- Specify a move for the initial state

- Specify a move for all possible states arising from MIN’s 
response

- Then all possible responses to all of MIN’s responses to 
MAX’s previous moves

- ...
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Optimal Strategies
Goal: Find optimal strategy

• What do we mean by optimal?
- Strategy that leads to outcomes at least as good as any 

other strategy, given that MIN is playing optimally
- Equilibrium (game theory)

Today we focus mainly on zero-sum games of perfect 
information

- Easy games according to game theory
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Minimax Value

Utility(n)  if n is a terminal state

Maxs in Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins in Succ(n) MINIMAX-VALUE(s) is n is a MIN node

MINIMAX-VALUE(n) =

ply
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Properties of Minimax

• Complete:
• Time complexity: 
• Space complexity: 
• Optimal:
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Minimax and Multi-Player 
Games
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Question

Can we now write a program that will play 
chess reasonably well?
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Question

Can we now write a program that will play 
chess reasonably well?

For chess b~35 and m~100
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Alpha-Beta Pruning

If we are smart (and lucky) we can do pruning
- Eliminate large parts of the tree from 

consideration

Alpha-beta pruning applied to a minimax tree
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Alpha-Beta Pruding
• Alpha:

- Value of best (highest value) choice we have found so far on 
path for MAX

• Beta:
- Value of best (lowest value) choice we have found so far on 

path for MIN

• Update alpha and beta as search continues
• Prune as soon as value of current node is known to 

be worse than current alpha or beta values for MAX or 
MIN
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Example
MAX

MIN

12 83 2 14 5 2
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Properties of Alpha-Beta
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• Can pruning result in a different outcome 
than minimax search?

• How much can be pruned when 
searching?



Real-Time Decisions

Alpha-Beta can be a huge improvement over 
minimax

- Still not good enough
- Need to search to terminal states for at least part of search space

- Need to make decisions quickly

Solution
- Heuristic evaluation function + cutoff tests
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Evaluation Functions

• Apply an evaluation function to a 
state

- If terminal state, function returns actual 
utility

- If non-terminal, function returns estimate 
of the expected utility

• Function must be fast to compute

21



Evaluation Functions

• How do we get evaluation functions?
- Expert knowledge

- Learned from experience

• Look for features of states
- Weighted linear function Eval(s)=∑i wifi(s)
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Cutting Off Search
Do we have to search to terminal states?

- No! Cut search early and apply evaluation function

When?
- Arbitrarily (but deeper is better)
- Quiescent states

- States that are “stable”

- Singular extensions
- Searching deeper when you have a move that is “clearly better”

- Can be used to avoid the horizon effect
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Cutting Off Search
How deep?

Novice player
- 5-ply (minimax)

Master player
- 10-ply (alpha-beta)

Grandmaster
- 14-ply + fantastic evaluation function, opening and endgame 

databases,...
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Stochastic Games
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Stochastic Games

• Need to consider best/worst cases 
+ probability they will occur

• Recall: Expected value of a random 
variable x E[x]=∑x in X P(x)x

• Expectiminimax: minimax but at 
chance nodes compute the 
expected value
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Expectiminimax
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Expectiminimax

WARNING: exact values do matter!  Order-preserving 
transformations of the evaluation function can change the choice 
of moves.  Must have positive linear transformations only
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What about Go?
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What about Go?
Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of 
simulated plays

Upper Confidence 
Bounds for Trees 
(UCT): “Minimax 
search” using UCB
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Summary
• Games pose lots of fascinating challenges 

for AI researchers
• Minimax search allows us to play optimally 

against an optimal opponent
• Alpha-beta pruning allows us to reduce the 

search space
• A good evaluation function is key to doing 

well
• Games are fun!
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