
Local Search

CS 486/686: Introduction to Artificial Intelligence

1

Overview
• Uninformed Search

- Very general: assumes no knowledge about the problem

- BFS, DFS, IDS

• Informed Search
- Heuristics

- A* search and variations

• Search and Optimization
- What are the problem features?

- Iterative improvement: hill climbing, simulated annealing

- Genetic algorithms

2

Introduction
• Both uninformed

and informed search
systematically
explore the search
space

- Keep 1 or more paths
in memory

- Solution is a path to
the goal

3

S
B

A
G S
A B

GB G

G

For many problems the path is unimportant

Examples

AV ~B V C

~A V C V D
B V D V ~E
~C V ~D V ~E

…

4

Informal Characterization

• Combinatorial structure being optimized
• Constraints have to be satisfied
• There is a cost function

- We want to find a good solution

• Search all possible states is infeasible
- Often easy to find some solution to the problem

- Often provably hard (NP-complete) to find the best
solution

5

Typical Example: TSP
Goal is to minimize the length of the
route

6

Constructive method: Start
from scratch and build up a
solution (using A* etc)

Iterative improvement
method: Start with
solution (may be
suboptimal or broken)
and improve it

Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a
landscape
Goal: find the highest (or lowest) point

7

Iterative Improvement Methods

• Start at some random
point (potential
solution)

• Generate all possible
points to move to

• If the set is not empty,
choose a point and
move to it

• If you are stuck (set is
empty), then restart

8

Iterative Improvement Methods

• What does it mean to “generate points to move
to”

- Generating the moveset

• Depends on the application

TSP

2-swap

9

Hill Climbing (Gradient Descent)

Main idea:Always take a step in the direction that
improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

“…like trying to find the top of Mt
Everest in a thick fog while

suffering from amnesia”, Russell
and Norvig

10

Hill Climbing

1. Start with some initial configuration S, with value
V(S)

2. Generate Moveset(S)= {S1,…,Sn}
3. Smax=argmaxSi V(Si)
4. If V(Smax)<V(S) return S (local optimium)
5. Let S←Smax Go to 2

11

Judging Hill Climbing
Good news
Easy to program!

Requires no memory of where we have been!

12

Judging Hill Climbing
Good news

Easy to program!

Requires no memory of
where we have been!

13

Bad news
Not necessarily complete

Not optimal

It can get stuck in local
optima/plateaus

Improving Hill Climbing

Plateaus
- Allow for sideways

moves
- But be careful since might move

sideways forever

Local Maxima
- Random restarts: If at

first you do not
succeed, try, try again!

14

Randomized Hill Climbing

15

Randomized hill climbing is like hill climbing
except

• You choose a random state, Si, from the
Moveset

• Move to Si if V(Si)>V(S)

Even More Randomization!
• Hill climbing is incomplete

- can get stuck at local optima

• A random walk is complete
- but very inefficient

16

New Idea:
Allow the algorithm to make some
“bad” moves in order to escape
local optima

Example: GSAT
AV~BVC 1

~AVCVD 1
BVDV~E 0
~CV~DV~E 1
~AV~CVE 1

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied
clauses: Eval(config)=# satisfied clauses

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then with prob p pick the
move that is least bad; prob (1-p) pick a random
one

GSAT Move_Set: Flip any 1 variable

17

Towards Simulated Annealing

18

1. Start with some initial configuration S, with value
V(S)

2. Generate Moveset(S)= {S1,…,Sn}
3. Randomly choose Si from Moveset(S)
4. Define ΔV=V(Si)-V(S)
5. If ΔV>0 then S←Si else with probability p S←Si

6. Go to 2

What About p?
Main Issue: How should we choose the probability of

making a “bad” move?

Ideas:

p=0.1 (or some fixed value)?

Decrease p with time?

Make p a function of |V-Vi|?

…

19

Selecting Moves in Simulated
Annealing

• If new value Vi is better
than old value V then
definitely move to new
solution

• If new value Vi is worse
than old value V then
move to new solution with
probability

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and
decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is
almost 0. 20

Properties to Simulated
Annealing

• When T is high:
- Exploratory phase: even bad moveshave a chance

of being picked (random walk)

• When T is low:
- Exploitation phase: “bad” moves have low

probability of being chosen (randomized hill climbing)

• If T is decreased slowly enough then simulated
annealing is guaranteed to reach optimal
solution

21

Genetic Algorithms

• Populations are encoded into a representation which allows
certain operations to occur

• An encoded candidate solution is an individual
• Each individual has a fitness

- Numerical value associated with its quality of solution

• A population is a set of individuals
• Populations change over generations by applying operators to

them
- Operations: selection, mutation, crossover

22

Typical Genetic Algorithm

• Initialize: Population P←N random individuals

• Evaluate: For each x in P, compute fitness(x)
• Loop

- For i=1 to N
- Select 2 parents each with probability proportional to fitness scores

- Crossover the 2 parents to prodice a new bitstring (child)

- With some small probability mutate child

- Add child to population

- Until some child is fit enough or you get bored

• Return best child in the population according to fitness
function

23

Selection
• Fitness proportionate selection:

- Can lead to overcrowding

• Tournament selection
- Pick i, j at random with uniform probability

- With probability p select fitter one

• Rank selection
- Sort all by fitness

- Probability of selection is proportional to rank

• Softmax (Boltzmann) selection:

24

Crossover
• Combine parts of individuals to create new ones

• For each pair, choose a random crossover point
- Cut the individuals there and swap the pieces

101|0101 011|1110

Cross over

011|0101 101|1110

Implementation: use a crossover mask m

Given two parents a and b the offspring are

(a^m)V(b^~m) and (a^~m)V (b^m)

25

Mutation
• Mutation generates new features

that are not present in original
population

• Typically means flipping a bit in the
string

• Can allow mutation in all individuals
or just in new offspring

100111 mutates to 100101

26

Example

27

Summary
• Useful for optimization problems
• Often the second-best way to solve a problem

- If you can, use A* or linear programming or ...

• Need to think about how to escape from local
optima

- Random restarts

- Allowing for bad moves

- ...

28

