
Local Search

CS 486/686: Introduction to Artificial Intelligence
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Overview
• Uninformed Search

- Very general: assumes no knowledge about the problem

- BFS, DFS, IDS

• Informed Search
- Heuristics

- A* search and variations

• Search and Optimization
- What are the problem features?

- Iterative improvement: hill climbing, simulated annealing

- Genetic algorithms
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Introduction
• Both uninformed 

and informed search 
systematically 
explore the search 
space

- Keep 1 or more paths 
in memory

- Solution is a path to 
the goal
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For many problems the path is unimportant



Examples

AV ~B V C

~A V C V D
B V D V ~E
~C V ~D V ~E

…
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Informal Characterization

• Combinatorial structure being optimized
• Constraints have to be satisfied
• There is a cost function

- We want to find a good solution

• Search all possible states is infeasible
- Often easy to find some solution to the problem

- Often provably hard (NP-complete) to find the best
solution
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Typical Example: TSP
Goal is to minimize the length of the 
route
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Constructive method: Start 
from scratch and build up a 
solution (using A* etc)

Iterative improvement 
method: Start with 
solution (may be 
suboptimal or broken) 
and improve it



Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a 
landscape
Goal: find the highest (or lowest) point

7



Iterative Improvement Methods

• Start at some random 
point (potential 
solution)

• Generate all possible 
points to move to

• If the set is not empty, 
choose a point and 
move to it

• If you are stuck (set is 
empty), then restart
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Iterative Improvement Methods

• What does it mean to “generate points to move 
to”

- Generating the moveset

• Depends on the application

TSP

2-swap
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Hill Climbing (Gradient Descent)

Main idea:Always take a step in the direction that 
improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

“…like trying to find the top of Mt 
Everest in a thick fog while 

suffering from amnesia”, Russell 
and Norvig
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Hill Climbing

1. Start with some initial configuration S, with value 
V(S)

2. Generate Moveset(S)= {S1,…,Sn}
3. Smax=argmaxSi V(Si)
4. If V(Smax)<V(S) return S (local optimium)
5. Let S←Smax Go to 2
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Judging Hill Climbing
Good news
Easy to program!

Requires no memory of where we have been!
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Judging Hill Climbing
Good news

Easy to program!

Requires no memory of 
where we have been!
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Bad news
Not necessarily complete

Not optimal

It can get stuck in local 
optima/plateaus



Improving Hill Climbing

Plateaus
- Allow for sideways 

moves
- But be careful since might move 

sideways forever

Local Maxima
- Random restarts: If at 

first you do not 
succeed, try, try again!
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Randomized Hill Climbing
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Randomized hill climbing is like hill climbing 
except

• You choose a random state, Si, from the 
Moveset

• Move to Si if V(Si)>V(S)



Even More Randomization!
• Hill climbing is incomplete

- can get stuck at local optima

• A random walk is complete
- but very inefficient
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New Idea:
Allow the algorithm to make some 
“bad” moves in order to escape 
local optima



Example: GSAT
AV~BVC  1

~AVCVD  1
BVDV~E  0
~CV~DV~E  1
~AV~CVE  1

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied 
clauses: Eval(config)=# satisfied clauses

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then  with prob p  pick the 
move that is least bad; prob (1-p) pick a random 
one

GSAT Move_Set: Flip any 1 variable
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Towards Simulated Annealing
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1. Start with some initial configuration S, with value 
V(S)

2. Generate Moveset(S)= {S1,…,Sn}
3. Randomly choose Si from Moveset(S)
4. Define ΔV=V(Si)-V(S)
5. If ΔV>0 then S←Si else with probability p S←Si 

6. Go to 2



What About p?
Main Issue: How should we choose the probability of 

making a “bad” move?

Ideas:

p=0.1 (or some fixed value)?

Decrease p with time?

Make p a function of |V-Vi|?

…
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Selecting Moves in Simulated 
Annealing

• If new value Vi is better 
than old value V then 
definitely move to new 
solution

• If new value Vi is worse
than old value V then 
move to new solution with 
probability

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and 
decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is 
almost 0. 20



Properties to Simulated 
Annealing

• When T is high:
- Exploratory phase: even bad moveshave a chance 

of being picked (random walk)

• When T is low:
- Exploitation phase: “bad” moves have low 

probability of being chosen (randomized hill climbing)

• If T is decreased slowly enough then simulated 
annealing is guaranteed to reach optimal 
solution
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Genetic Algorithms

• Populations are encoded into a representation which allows 
certain operations to occur

• An encoded candidate solution is an individual
• Each individual has a fitness

- Numerical value associated with its quality of solution

• A population is a set of individuals
• Populations change over generations by applying operators to 

them
- Operations: selection, mutation, crossover
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Typical Genetic Algorithm

• Initialize: Population P←N random individuals

• Evaluate: For each x in P, compute fitness(x)
• Loop

- For i=1 to N 
- Select 2 parents each with probability proportional to fitness scores

- Crossover the 2 parents to prodice a new bitstring (child)

- With some small probability mutate child

- Add child to population

- Until some child is fit enough or you get bored

• Return best child in the population according to fitness 
function
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Selection
• Fitness proportionate selection:

- Can lead to overcrowding

• Tournament selection
- Pick i, j at random with uniform probability

- With probability p select fitter one

• Rank selection
- Sort all by fitness

- Probability of selection is proportional to rank

• Softmax (Boltzmann) selection:
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Crossover
• Combine parts of individuals to create new ones

• For each pair, choose a random crossover point
- Cut the individuals there and swap the pieces

101|0101                 011|1110

Cross over

011|0101                 101|1110

Implementation: use a crossover mask m

Given two parents a and b the offspring are

(a^m)V(b^~m) and (a^~m)V (b^m)
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Mutation
• Mutation generates new features 

that are not present in original 
population

• Typically means flipping a bit in the 
string

• Can allow mutation in all individuals 
or just in new offspring

100111 mutates to 100101
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Example
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Summary
• Useful for optimization problems
• Often the second-best way to solve a problem

- If you can, use A* or linear programming or ...

• Need to think about how to escape from local 
optima

- Random restarts

- Allowing for bad moves

- ...
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