Constraint
Satisfaction

CS 486/686: Introduction to Artificial Intelligence

Outline

What are Constraint Satisfaction
Problems (CSPs)?

Standard Search and CSPs

Improvements
= Backtracking
= Backtracking + heuristics

= Forward Checking

2

Introduction

Standard search

State is a “black box”: arbitrary
data structure

Goal test: any function over
states

Successor function: anything
that lets you move from one state
to another

Constraint satisfaction
problems (CSPs)

A special subset of search
problems

States are defined by variables Xi
with values from domains Di

Goal test is a set of constraints
specifying allowable combinations
of values for subsets of variables

Example: Map Colouring

Variables
* V=T, V, NSW, Q, NT, WA, SA}

Domains

D={red, blue, green}

Constraints: adjacent regions must have different colours
* Implicit: WA=NT
* Explicit: (WA, NT) € {(red, blue), (red, green), (blue, red)...}

Solution is an assignment satisfying all constraints

* {WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue,
T=green}

N Queens Problem

® Variables: Xi;

®* Domains: {0,1}

o

® Constraints:

Vi, 5,k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi, 5,k (X5, X;) € {(0,0),(0,1),(1,0)}

Vi, 3,k (Xij, Xitr,j+4) € {(0,0),(0,1),(1,0)}
Vi, 5,k (Xij, Xitg,j—k) €{(0,0),(0,1),(1,0)}

5

N Queens Problem

® Variables: Qi

®* Domains: {1,2,...,N}

® Constraints:

®* Implicit:

Vi, j non-threatening(Q;, Q;)

* Explict:
(Qla Q2) S {(17 3)7 (17 4)7 " }

3 Sat

- Variables: Vi1,..., Vn
- Domains: {0,1}

« Constraints:

- K constraints of the form Vi'\VV V"V Vk Vi where
Vi is either Vi or =V

A-B vV -C
A canonical NP-complet
-AV BV D 4 compiete
problem
DV BVE

-AV-BvVC

Types of CSPs

Discrete Variables

®* Finite domains
®* If domain has size d, then there are O(d") complete
assignments
®* Boolean CSPs (including 3-SAT)

® Infinite domains (e.g. integers)

®* Constraint languages

® Linear constraints are solvable but non-linear are undecidable

Continuous Variables
® Linear programming (linear constraints solvable in polynomial
time)

Types of CSPs

Varieties of Constraints
® Unary constraints: involve a single variable

®* NSWs=zred
® Binary constraints: involve a pair of variables
* NSW=zQ

® Higher-order constraints: involve more than two variables

® AIDIff(V1,...,Vn)

Soft Constraints (preferences)
* red “is better than” green

®* Constrained optimization problems

Constraint Graphs

You can represent binary
constraints with a
constraint graph

Nodes are variables

Edges are constraints

NT
Y Q
WA
o

CSPs and Search

We can use standard search to solve CSPs
States:

Initial State:

Successor Function:

Goal Test:

NT

~JQ
WA
R

CSPs and Search

States:
Initial State:

Successor Function:

Goal Test:

WA

NT

What happens if we run
something like BFS?

T

S

I
s

NSW

T~

12

Commutativity

Key Insight:
« CSPs are commutative

« QOrder of actions taken does not
effect outcome

- (Can assign variables in any order

WA

- CSP algorithms take advantage of this

» Consider possible assignments for a
single variable at each node in the

search tree

~Q

\~

NT
< SA NSW

{WA=red, NT=blue}
IS equivalent to
{NT=blue, WA=red}

Backtracking Search

Backtracking search is the basic algorithm for CSPs

®* Select unassigned variable X One variable at a
| «— time

®* For each value {x1,...,xn} in domain of X

= If value satisfies constraints, assign X=xi and exit loop

®* If an assignment is found

- Move to next variabl ~heck
ove To next vanavle constraints as
* If no assignment found you go

= Back up to preceding variable and try a different assignment
for it

Backtracking Example

0

Backtracking Example

Backtracking Example

0
WA=bIu WA=red A?g_;
N NT=red T=green

Backtracking Example

(o
WA _—
SA|——INSW

Backtracking and Efficiency

Note that backtracking search is basically DFS with
some small improvements. Can we improve on it

further?

Ordering:
« Which variables should be tried first?
* In what order should a variable’s values be tried?

Filtering:

- Can we detect failure early?

Structure:
- Can we exploit the problem structure?

19

Ordering: Most Constrained
Variable

Choose the variable which has the
fewest “legal” moves

AKA minimum remaining values (MRV)

SO o e S

D\r={green, blue} Dg,={blue}
Dgp={green, blue} Do={blue, red}

D.wers={red, green, blue} D, ers={red,green,blue}

20

Ordering: Most Constraining
Variable

®* Most constraining variable:

= Choose variable with most constraints on remaining
variables

®* Tie-breaker among most constrained variables

Ry R TR

SA is involved in 5 constraints

21

Ordering: Least-Constraining
Value

® Given a variable, choose the least

constraining value:

- The one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

Al

22

Filtering: Forward Checking

° Forward checking:

= Keep track of remaining legal values for
unassigned variables

= Terminate search when any variable has
no legal values

23

Example: Forward Checking

NT \Q
WA v
SAl— |NSW
/
WA NT Q NSW |V SA T

RGB |RGB [RGB |RGB |RGB |RGB |RGB

24

Example: Forward Checking

NT

NQ
WA
SAV_NSW
/
WA NT Q NSW |V SA T

RGB |RGB |RGB |RGB |RGB |RGB |RGB

R KGB |RGB |RGB |RGB |#GB |RGB
Forward checking removes The value Red of NT and of SA”

25

Example: Forward Checking

NT\.
. (A

SAl— |NSW

/
WA |[NT |Q NSW |V SA |T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB |RGB |RGB |RGB |GB |RGB
R |#b |G RZB |RGB ZB |RGB

26

Example: Forward Checking

el
-<5AVNSW
AN
WA |[NT |Q NSW |V SA |T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB |RGB |RGB |RGB |GB |RGB
R B G RB |RGB |B RGB
R B G RE |B ? |RGB

27

Example: Forward Checking

Empty set: the current assignment
{(WA «R), (Q «6), (V «B)}
does not lead to a solution

WA |INT |Q |NSW [V [sA [T

RGB |RGB |RGB |RGB |RGB [RGB |RGB
R |GB |RGB |RGB |RGB |GB |RGB
R |B |G |RB_|RGB [B, |RGB
R B | |rR¥ |[B [IRGB

28

Filtering: Arc Consistency

Forward checking propagates information from
assigned to unassigned variables, but it can not
detect all future failures early

NT

[

NT and SA can

not both be blue!

e

W\

SA—NSW

/

WA [NT |Q NSW |V SA |T
RGB |RGB |RGB |RGB |RGB |RGB |RGB
R GB |RGB |RGB |RGB |GB |RGB
R B G RB |RGB |B RGB

Need to reason

29

about constraints

Filtering: Arc Consistency

Given domains D+ and D2, an arc is
consistent if for all x in D1 there isay in D2
such that x and y are consistent.

NS
W

Dsa={blue} Dnsw={blue,red}

Is the arc from SA to NSW consistent?
Is the arc from NSW to SA consistent?

30

Structure: Independent
Subproblems

Tasmania does not
Interact with the rest
of the problem

Idea: Break down the graph into its a
connected components. Solve each @
component separately.

Significant potential savings:
- Assume n variables with domain size d: O(d")
- Assume each component involves c variables (n/c components)

for some constant c: O(d€ n/c)

31

Structure: Tree Structures

CSPs can be solved in O(nd?) if there are no loops in
the constraint graph

Step 1: For i=n to 1, make-consistent(Xi,parent(Xi))

Step 2: For i=1 to n, assign value to Xj consistent
with parent(Xi) [Note: No backtracking!]

32

Structure: Non-Trees?

If we assign SA a colour

O ®
@"@ (wa) O and then remove that
w = (=) colour from the domains
all other variables, then

° “ we have a tree
O, @

Step 1: Choose a subset S of variables such that the constraint graph
becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S
1. Remove from the domains of remaining variables, all values that are

inconsistent with S
2. If the remaining CSP has a solution, return it

33

Structure: Cutsets

(v
O
@" S
O = O

@ ®
Running time:
 Let c be the size of the cutset then

- d°®combinations of variables in S

 For each combination must solve a tree problem of size n-c (O(n-c)d?)

» Therefore, running time is O(d¢(n-c)d?)
» Finding smallest cutset is NP-hard but efficient approximations exist

34

Structure: Non-Trees?

1. Each variable appears in at least one subproblem

2. If two variables are connected by a constraint, then they (and the
constraint) must appear together in at least one subproblem

3. If a variable appears in two subproblems in the tree, it must appear in
every subproblem along the path connecting those subproblems

35

Structure: Tree
Decompositions

Solve each subproblem independently

* e.g{(WA=r,NT=g,SA=b),(WA=Db,
NT=g,SA=r),...}

® Solve constraints connecting the

subproblems using tree-based algorithr
(to make sure that subproblems with
shared variables agree)

Want to make the subproblems as small as possible!
Tree width: w= Size of largest subproblem-1
Running time O(nd"¥+1)

Finding tree decomposition with min
tree-width is NP-hard, but good
heuristics exist

36

Summary

®* How to formalize problems as CSPs

Backtracking search

®* Improvements using

Ordering

Filtering

® Structure

37

