Solving Problems by
Searching

CS 486/686: Introduction to Artificial Intelligence

Introduction

® Search was one of the first topics
studied in Al

= Newell and Simon (1961) General Problem
Solver

® Central component to many Al systems

= Automated reasoning, theorem proving,
robot navigation, scheduling, game

playing,...

Search Problems

® A search problem consists of

® a state space H!'u-l-

a successor function (actions, cost)

a start state and a goal test

(N, 1.0)
!<

(E, 1.0)

®* A solution is a sequence of actions (plan)
from the start state to a goal state

Example: Traveling in Romania

Start 73
Arad
Sibiu o Fagaras
118
80
Timisoara — Rimnicu Vilcea
211
111 7 Lugoj Pitesti
]
70
L] Mehadia 101
75 138
Dobreta L 120

I .
Craiova

Neamt
|
87
J lasi
92
J Vaslui
142
3 o8 Hirsova
AC Urziceni
- 86
Bucharest
90
Eforie

L] Giurgiu

® States:
® Initial State:

® Successor
Function:

® Goal test:

® Solution:

Examples of Search Problems

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
® States:
® States:
® Initial State:
® Initial State:
® Successor
® Successor Function:
Function:
® Goal test:
® Goal test:
® Solution:

® Solution:

Examples of Search Problems

Fle Ve Scledie Oplhen L) e

R e -y By
T 7T T T T T 13 YaHOO!, Ma 2 S B =)
o o L L €Y 8t e L= C14 CIL 0% CMm e oM 031 o { oy y ' n, B
S %= e e o e G %oem 09 f Waterloo g &gy_ll -t |J]l__'
1‘_i —

Pak .5

N =25
©2004 Yahoo! inc @ 2004 GDT Inc :.—

Our Definition Excludes...

Chance

Adversaries

Continuous states

Partial
= ;Q Observability

All of the above

What is Is a state space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

= Problem: Pa’[h|ng = Problem: Eat-All-Dots
- States: (x,y) location - States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
- Successor: update location = Successor: update location
only and possibly a dot boolean
- Goal test: is (x,y)=END = Goal test: dots all false

8

Adapted from UC Berkeley’s CS188 Course

Representing Search

® State space graph

= Vertices correspond to states
(one vertex for each state)

= Edges correspond to
sSucCcessors

= Goal test is a set of goal nodes

®* We search for a solution by
building a search tree and
traversing it to find a goal
state

Search Tree

® A search tree:

Start state is the root of
the tree

Children are successors

A solution is a path from
the root to a goal node.

For most problems we do
not actually generate the
entire tree

A plan is a path in the tree.

A
(c)
g

Quiz

® Given this state graph, how large is the
search tree?

Expanding Nodes

®* Expanding a node

= Applying all legal operators to the state
contained in the node

= Generating nodes for all corresponding
successor states

Example: Traveling in Romania

Start
Arad
Sibiu o Fagaras
118 I
80
Timisoara — Rimnicu Vilcea
211
111 3 Lugoj Pitesti
O
70
] Mehadia 101

75 138

Dobreta [120
o
Craiova

Neamt
.|
87
- lasi
92
- Vaslui
142
o8 Hirsova
85 . .
Urziceni
J End 86
Bucharest
90
Eforie

LJ Giurgiu

Generic Search Algorithm

® Initialize with initial state of the problem

® Repeat
= If no candidate nodes can be expanded return failure

= Choose leaf node for expansion, according to search
strategy

= If node contains goal state, return solution

= Otherwise, expand the node. Add resulting nodes to the
tree

Implementation Detalils

® Need to keep track of nodes to be expanded (fringe)

® Implement using a queue:
= Insert node for initial state

= Repeat
= If queue is empty, return failure
= Dequeue a node
= If node contains goal state, return solution

= Expand node

® Search algorithms differ in their queuing function!

Search Strategies

=

> q

Search Strategies

d
N N
b C e r
N N |
h r f

N SN

p q G

Depth-First Search

Strategy: Expand deepest node first
Implementation: LIFO stack

b C e h r
a a h r p q f
TN | | —
p q f q C G
| |
/\ 2

Key Properties

®* Completeness: Is the alg. guaranteed to find a
solution if the solution exists?

® Optimality: Does the alg. find the optimal solution?

® Time complexity ’

1 node

b nodes

® Space complexity (size of the fringe)

b2 nodes

m tiers <

b: branching factor
m: maximum depth

d: depth of shallowest goal node N

b™ nodes

Number of nodes in tree? 1+b+b?+...+b™=0(b™)

DFS Properties

®* Complete?

® Optimal?

®* Time complexity
1 node
b nodes

b2 nodes

® Space complexity <
m tiers

b™ nodes

Breadth-First Search

(&) G

oNC
Strategy: Expand shallowest node first 5 M
Implementation: FIFO queue M
P ’ el (r)

(g
S
d © p
C e h r q
| T PN |
a h r p q f
p q f q ¢ G
|
| /\ a

BFS Properties

®* Complete?

® Optimal?

1 node
b nodes

b2 nodes

®*Time COmpleXity m tiers <

b™ nodes

® Space complexity

Quiz: DFS vs BFS

b b
O
© o © ©
O

lterative Deepening Search

of DFS space complexity and BFS

completeness/shallow solution advantage?

Limit=0 D

Limit = 1 [==

Limit=2 @@ /\ -
A SN

Figure 3.16 Four iterations of iterative deepening search on a binary tree.

Can we combine search methods to take advantage

24

IDS Properties

®* Complete?

1 node
b nodes

® Optimal?

b2 nodes

m tiers <

®* Time complexity

b™ nodes

® Space complexity

Wasteful? Most nodes found in
lowest level of search so not too
bad

25

Cost-Sensitive Search

Recall that BFS was only optimal under some conditions
(i.e. we only cared about number of actions taken). What
can we do if actions have different costs? 2

Uniform Cost Search

Strategy: Expand cheapest node first
Implementation: Priority queue

27

UCS Properties

®* Complete?
® Optimal?
® Time complexity

C*/E tiers <

® Space complexity

28

Summary

®* These algorithms are basically the
same except for the order in which they
expand nodes

® Basically all priority queues with
different ways to determining priorities

®* How successful the search is depends
heavily on your model!

Questions?

® Next class: Informed search

