Artificial Neural Networks

CS 486/686: Introduction to Artificial Intelligence

Outline

- What is a Neural Network?
 - Perceptron learners
 - Multi-layer networks

Introduction

- Machine learning algorithms can be viewed as approximations of functions that describe the data
- In practice, the relationships between input and output can be extremely complex.
- We want to:
 - Design methods for learning arbitrary relationships
 - Ensure that our methods are efficient and do not overfit the data
- Today we'll discuss two modern techniques for learning arbitrary complex functions

Artificial Neural Nets

- Idea: The humans can often learn complex relationships very well.
- Maybe we can simulate human learning?

Human Brains

- A brain is a set of densely connected neurons.
- A neuron has several parts:
 - Dendrites: Receive inputs from other cells
 - Soma: Controls activity of the neuron
 - Axon: Sends output to other cells
 - Synapse: Links between neurons

Human Brains

- Neurons have two states
 - Firing, not firing
- All firings are the same

- Rate of firing communicates information (FM)
- Activation passed via chemical signals at the synapse between firing neuron's axon and receiving neuron's dendrite
- Learning causes changes in how efficiently signals transfer across specific synaptic junctions.

Artificial Brains?

 Artificial Neural Networks are based on very early models of the neuron.

 Better models exist today, but are usually used theoretical neuroscience, not machine learning

Artificial Brains?

An artificial Neuron (McCulloch and Pitts 1943)

Link~ Synapse

Weight ~ Efficiency

Input Fun.~ Dendrite

Activation Fun.~ Soma

Output = Fire or not

Artificial Neural Nets

- Collection of simple artificial neurons.
- $\begin{array}{lll} \bullet & \text{Weights} & W_{i,j} & \text{denote strength of connection} \\ & \text{from i to j} \end{array}$
- Input function: $in_i = \sum_j W_{i,j} \times a_j$
- Activation Function: $a_i = g(in_i)$

Activation Function

- Activation Function: $a_i = g(in_i)$
- Should be non-linear (otherwise, we just have a linear equation)
- Should mimic firing in real neurons
 - Active (a_i ~ 1) when the "right" neighbors fire the right amounts
 - Inactive (a_i ~ 0) when fed "wrong" inputs

Common Activation Functions

Threshold Function

Weights determine threshold

Sigmoid Function

Logic Gates

 It is possible to construct a universal set of logic gates using the neurons described (McCulloch and Pitts 1943)

Logic Gates

 It is possible to construct a universal set of logic gates using the neurons described (McCulloch and Pitts 1943)

NOT

Network Structure

Feed-forward ANN

- Direct acyclic graph
- No internal state: maps inputs to outputs.

Recurrant ANN

- Directed cyclic graph
- Dynamical system with an internal state
- Can remember information for future use

Example

$$a_5 = g(W_{3,5} \cdot a_5 + W_{4,5} \cdot a_4)$$

Example

$$a_5 = g(W_{3,5} \cdot a_5 + W_{4,5} \cdot a_4)$$

$$a_5 = g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$$

Perceptrons

Single layer feed-forward network

Perceptrons

Can learn only linear separators

Training Perceptrons

- Learning means adjusting the weights
 - Goal: minimize loss of fidelity in our approximation of a function
- How do we measure loss of fidelity?
 - Often: Half the sum of squared errors of each data point

$$E = \sum_{i} 0.5(y_i - h_W(x_i))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_{-g}(\sum_{i} W_j x_{i,j}))$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_- g(\sum_{j} W_j x_{i,j}))$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} (y_i - h_W(\mathbf{x_i})) (-g'(\mathbf{w} \cdot \mathbf{x_i}) \frac{\partial}{\partial W_k} \mathbf{w} \cdot \mathbf{x_i})$$

$$\frac{\partial E}{\partial W_k} = \frac{\partial}{\partial W_k} \sum_{i} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} \frac{\partial}{\partial W_k} 0.5(y_i - h_W(\mathbf{x_i}))^2$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} 0.5 \cdot 2 \cdot (y_i - h_W(\mathbf{x_i})) \frac{\partial}{\partial W_k} (y_- g(\sum_{j} W_j x_{i,j}))$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} (y_i - h_W(\mathbf{x_i})) (-g'(\mathbf{w} \cdot \mathbf{x_i}) \frac{\partial}{\partial W_k} \mathbf{w} \cdot \mathbf{x_i})$$

$$\frac{\partial E}{\partial W_k} = \sum_{i} (y_i - h_W(\mathbf{x_i})) (-g'(\mathbf{w} \cdot \mathbf{x_i}) \cdot x_{i,k})$$

Learning Algorithm

- Repeat for "some time"
- For each example i:

$$I \leftarrow \mathbf{w} \cdot \mathbf{x_i}$$

$$E \leftarrow y_i - g(I)$$

$$W_j \leftarrow W_j + \alpha(E \cdot g'(I) \cdot x_{i,j}) \forall j$$

Multilayer Networks

- Minsky's 1969 book *Perceptrons* showed perceptrons could not learn XOR.
- At the time, no one knew how to train deeper networks.
- Most ANN research abandoned.

Multilayer Networks

 Any continuous function can be learned by an ANN with just one hidden layer (if the layer is large enough).

Training Multilayer Nets

 For weights from hidden to output layer, just use Gradient Descent, as before.

$$\Delta_i = E \cdot g'(I)$$

$$W_{j,i} = W_{j,i} + \alpha \Delta_i a_j$$

 For weights from input to hidden layer, we have a problem: What is y?

$$E = \sum_{i} 0.5(y_i - h_W(x_i))^2$$

Back Propigation

- Idea: Each hidden layer caused some of the error in the output layer.
- Amount of error caused should be proportionate to the connection strength.

$$\Delta_{i} = E \cdot g'(I)$$

$$W_{j,i} = W_{j,i} + \alpha \Delta_{i} a_{j}$$

$$\Delta_{j} = g'(I) \cdot \sum_{i} W_{j,i} \Delta_{i}$$

$$W_{k,j} = W_{k,j} + \alpha \Delta_{j} x_{k}$$

Back Propagation

- Repeat for "some time":
- Repeat for each example:
 - Compute Deltas and weight change for output layer, and update the weights.
 - Repeat until all hidden layers updated:
 - Compute Deltas and weight change for the deepest hidden layer not yet updated, and update it.

When to use ANNs

- When we have high dimensional or realvalued inputs, and/or noisy (e.g. sensor data)
- Vector outputs needed
- Form of target function is unknown (no model)
- Not import for humans to be able to understand the mapping

Drawbacks of ANNs

- Unclear how to interpret weights, especially in many-layered networks.
- How deep should the network be? How many neurons are needed?
- Tendency to overfit in practice (very poor predictions outside of the range of values it was trained on)