
Artificial Neural Networks

CS 486/686: Introduction to Artificial Intelligence

1

Outline

• What is a Neural Network?
- Perceptron learners

- Multi-layer networks

2

Introduction
• Machine learning algorithms can be viewed as

approximations of functions that describe the data

• In practice, the relationships between input and output can
be extremely complex. 

• We want to:

• Design methods for learning arbitrary relationships

• Ensure that our methods are efficient and do not overfit the data

• Today we'll discuss two modern techniques for learning
arbitrary complex functions

3

Artificial Neural Nets

• Idea: The humans can often learn
complex relationships very well.

• Maybe we can simulate human learning?

4

Human Brains
• A brain is a set of densely connected neurons.

• A neuron has several parts:

- Dendrites: Receive inputs from other cells

- Soma: Controls activity of the neuron

- Axon: Sends output to other cells

- Synapse: Links between neurons

5

Human Brains
• Neurons have two states

- Firing, not firing

• All firings are the same  

• Rate of firing communicates information (FM)

• Activation passed via chemical signals at the synapse
between firing neuron's axon and receiving neuron's
dendrite

• Learning causes changes in how efficiently signals
transfer across specific synaptic junctions.

6

Artificial Brains?

• Artificial Neural Networks are based on
very early models of the neuron. 

• Better models exist today, but are usually
used theoretical neuroscience, not
machine learning

7

Artificial Brains?

• An artificial Neuron (McCulloch and Pitts 1943)

8

Link~ Synapse

Weight ~ Efficiency

Input Fun.~ Dendrite

Activation Fun.~ Soma

Output = Fire or not

Artificial Neural Nets

• Collection of simple artificial neurons.

• Weights denote strength of connection
from i to j

• Input function: 

• Activation Function:

9

Activation Function

• Activation Function:

• Should be non-linear (otherwise, we just
have a linear equation)

• Should mimic firing in real neurons
- Active (a_i ~ 1) when the "right" neighbors fire the

right amounts

- Inactive (a_i ~ 0) when fed "wrong" inputs

10

Common Activation Functions

11

Weights determine
 threshold

Logic Gates
• It is possible to construct a universal set of logic gates

using the neurons described (McCulloch and Pitts 1943)

12

Logic Gates
• It is possible to construct a universal set of logic gates

using the neurons described (McCulloch and Pitts 1943)

13

Network Structure
• Feed-forward ANN

- Direct acyclic graph

- No internal state: maps inputs to outputs. 

• Recurrant ANN
- Directed cyclic graph

- Dynamical system with an internal state

- Can remember information for future use

14

Example

15

Example

16

Perceptrons

17

Single layer feed-forward network

Perceptrons
Can learn only linear separators 

18

Training Perceptrons
- Learning means adjusting the weights

- Goal: minimize loss of fidelity in our approximation of a function  

- How do we measure loss of fidelity?
- Often: Half the sum of squared errors of each data point 

19

Gradient Descent

20

Gradient Descent

21

Gradient Descent

22

Gradient Descent

23

Gradient Descent

24

Learning Algorithm
- Repeat for "some time" 

- For each example i:
 

25

Multilayer Networks

• Minsky's 1969 book Perceptrons showed
perceptrons could not learn XOR.

• At the time, no one knew how to train
deeper networks.

• Most ANN research abandoned.

26

Multilayer Networks
• Any continuous function can be learned

by an ANN with just one hidden layer (if
the layer is large enough).

27

Training Multilayer Nets

• For weights from hidden to output layer, just
use Gradient Descent, as before.

• For weights from input to hidden layer, we
have a problem: What is y?

28

Back Propigation

• Idea: Each hidden layer caused some of the
error in the output layer.

• Amount of error caused should be
proportionate to the connection strength.

29

Back Propagation

• Repeat for "some time":

• Repeat for each example:

- Compute Deltas and weight change for output
layer, and update the weights .

- Repeat until all hidden layers updated:
- Compute Deltas and weight change for the deepest hidden layer not yet

updated, and update it.

30

When to use ANNs

• When we have high dimensional or real-
valued inputs, and/or noisy (e.g. sensor data)

• Vector outputs needed

• Form of target function is unknown (no
model)

• Not import for humans to be able to
understand the mapping

31

Drawbacks of ANNs

• Unclear how to interpret weights, especially
in many-layered networks.

• How deep should the network be? How
many neurons are needed?

• Tendency to overfit in practice (very poor
predictions outside of the range of values it
was trained on)

32

